
hyperparameter_hunter Documentation
Release 3.0.0

Hunter McGushion

Aug 06, 2019

CONTENTS

1 Why Use HyperparameterHunter? 1
1.1 TL;DR . 1
1.2 What is HyperparameterHunter? . 1
1.3 Features . 1

2 Installation 3
2.1 Dependencies . 3

3 Quick Start 5
3.1 Set Up an Environment . 5

4 HyperparameterHunter API Essentials 7
4.1 Environment . 7
4.2 Experimentation . 15
4.3 Hyperparameter Optimization . 18
4.4 Hyperparameter Space . 49
4.5 Feature Engineering . 53
4.6 Extras . 64
4.7 Indices and tables . 67

5 Complete HyperparameterHunter API 69

6 File Structure Overview 71
6.1 HyperparameterHunterAssets/ . 71

7 HyperparameterHunter Examples 75
7.1 Getting Started . 75
7.2 Different Libraries . 75
7.3 Advanced Features . 75

8 HyperparameterHunter Library Compatibility 77
8.1 Tested and Compatible . 77
8.2 Support On the Way . 77
8.3 Not Yet Compatible . 77
8.4 Notes . 78

9 Indices and tables 79

i

ii

CHAPTER

ONE

WHY USE HYPERPARAMETERHUNTER?

This section provides an overview of the mission and primary uses of HyperparameterHunter, as well as some of its
main features.

1.1 TL;DR

• HyperparameterHunter saves your Experiments to provide:

1) Enhanced, long-term hyperparameter optimization; and

2) Improved awareness of what you’ve done, what works, and what you should try next

1.2 What is HyperparameterHunter?

• Don’t think of HyperparameterHunter as a new machine learning tool; its a toolbox

– There are tons of excellent machine learning libraries. The problem is keeping track of them all

– Impractical to keep track of which libraries work, which hyperparameters are best for whichever algo-
rithms, and how your experiment was set up

– Let HyperparameterHunter organize your tools for you, while you focus on using the best tool for the job

– Stop wasting time debating between a screwdriver and a wrench, when you’re staring at a nail

• Not a new thing to try alongside other algorithms. Its a new way of doing the things you already do

– Keep using the libraries/algorithms you know and love, just tell HyperparameterHunter about them

• Provides a simple wrapper for executing machine learning algorithms

– Automatically saves the testing conditions/hyperparameters, results, predictions, and more

– Test and evaluate wide range of algorithms from many different libraries in a unified format

1.3 Features

• Stop worrying about keeping track of hyperparameters, scores, or re-running the same Experiments

• See records of all your Experiments: from birds-eye-view leaderboards, to individual result files

• Supercharge informed hyperparameter optimization by allowing it to use saved Experiments

– No need to hold HyperparameterHunter’s hand while it tries to find the Experiment you ran months ago

1

hyperparameter_hunter Documentation, Release 3.0.0

– It automatically reads your Experiment files to find the ones that fit, and it learns from them

• Eliminate boilerplate code for cross-validation loops, predicting, and scoring

• Have predictions ready to go when its time for ensembling, meta-learning, and finalizing your models

2 Chapter 1. Why Use HyperparameterHunter?

CHAPTER

TWO

INSTALLATION

This section explains how to install HyperparameterHunter.

For the latest stable release, execute:

pip install hyperparameter_hunter

For the bleeding-edge version, execute:

pip install git+https://github.com/HunterMcGushion/hyperparameter_hunter.git

2.1 Dependencies

• Dill

• NumPy

• Pandas

• SciPy

• Scikit-Learn

• Scikit-Optimize

• SimpleJSON

3

hyperparameter_hunter Documentation, Release 3.0.0

4 Chapter 2. Installation

CHAPTER

THREE

QUICK START

This section provides a jumping-off point for using HyperparameterHunter’s main features.

3.1 Set Up an Environment

from hyperparameter_hunter import Environment, CVExperiment
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import StratifiedKFold
from xgboost import XGBClassifier

data = load_breast_cancer
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df["target"] = data.target

env = Environment(
train_dataset=df,
results_path="path/to/results/directory",
metrics=["roc_auc_score"],
cv_type=StratifiedKFold,
cv_params=dict(n_splits=5, shuffle=2, random_state=32)

)

3.1.1 Individual Experimentation

experiment = CVExperiment(
model_initializer=XGBClassifier,
model_init_params=dict(objective="reg:linear", max_depth=3, subsample=0.5)

)

3.1.2 Hyperparameter Optimization

from hyperparameter_hunter import BayesianOptPro, Real, Integer, Categorical

optimizer = BayesianOptPro(iterations=10, read_experiments=True)

optimizer.forge_experiment(
model_initializer=XGBClassifier,

(continues on next page)

5

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

model_init_params=dict(
n_estimators=200,
subsample=0.5,
max_depth=Integer(2, 20),
learning_rate=Real(0.0001, 0.5),
booster=Categorical(["gbtree", "gblinear", "dart"]),

)
)

optimizer.go()

Plenty of examples for different libraries, and algorithms, as well as more advanced HyperparameterHunter features
can be found in the examples directory.

6 Chapter 3. Quick Start

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples

CHAPTER

FOUR

HYPERPARAMETERHUNTER API ESSENTIALS

This section exposes the API for all the HyperparameterHunter functionality that will be necessary for most users.

4.1 Environment

class hyperparameter_hunter.environment.Environment(train_dataset, environ-
ment_params_path=None,
*, results_path=None,
metrics=None, hold-
out_dataset=None,
test_dataset=None, tar-
get_column=None,
id_column=None,
do_predict_proba=None,
prediction_formatter=None,
metrics_params=None,
cv_type=None, runs=None,
global_random_seed=None,
random_seeds=None, ran-
dom_seed_bounds=None,
cv_params=None, ver-
bose=None, file_blacklist=None,
reporting_params=None,
to_csv_params=None,
do_full_save=None, exper-
iment_callbacks=None, ex-
periment_recorders=None,
save_transformed_metrics=None)

Bases: object

Class to organize the parameters that allow Experiments/OptPros to be fairly compared

Environment is the collective starting point for all of HyperparameterHunter’s biggest and best toys: Experi-
ments and OptimizationProtocols. Without an Environment, neither of these will work.

The Environment is where we declare all the parameters that transcend traditional “hyperparameters”. It houses
the stuff without which machine learning can’t even really start. Specifically, Environment cares about 1) The
data used for fitting/predicting, 2) The cross-validation scheme used to split the data and fit models; and 3) How
to evaluate the predictions made on that data. There are plenty of other goodies documented below, but the
absolutely mission-critical parameters concerned with the above tasks are train_dataset, cv_type, cv_params,
and metrics. Additionally, it’s important to provide results_path, so Experiment/OptPro results can be saved,
which is kind of what HyperparameterHunter is all about

7

hyperparameter_hunter Documentation, Release 3.0.0

Parameters

train_dataset: Pandas.DataFrame, or str path The training data for the experiment. Will be
split into train/holdout data, if applicable, and train/validation data if cross-validation is to
be performed. If str, will attempt to read file at path via pandas.read_csv(). For
more information on which columns will be used during fitting/predicting, see the “Dataset
columns” note in the “Notes” section below

environment_params_path: String path, or None, default=None If not None and is valid
.json filepath containing an object (dict), the file’s contents are treated as the default val-
ues for all keys that match any of the below kwargs used to initialize Environment

results_path: String path, or None, default=None If valid directory path and the results di-
rectory has not yet been created, it will be created here. If this does not end with <AS-
SETS_DIRNAME>, it will be appended. If <ASSETS_DIRNAME> already exists at this
path, new results will also be stored here. If None or invalid, results will not be stored

metrics: Dict, List, or None, default=None Iterable describing the metrics to be recorded,
along with a means to compute the value of each metric. Should be of one of the two
following forms:

List Form:

• [“<metric name>”, “<metric name>”, . . .]: Where each value is a string that names an
attribute in sklearn.metrics

• [Metric, Metric, . . .]: Where each value of the list is an instance of metrics.Metric

• [(<name>, <metric_function>, [<direction>]), (<*args>), . . .]: Where each value of the
list is a tuple of arguments that will be used to instantiate a metrics.Metric. Argu-
ments given in tuples must be in order expected by metrics.Metric: (name, met-
ric_function, direction)

Dict Form:

• {“<metric name>”: <metric_function>, . . . }: Where each key is a name for the corre-
sponding metric callable, which is used to compute the value of the metric

• {“<metric name>”: (<metric_function>, <direction>), . . . }: Where each key is a name
for the corresponding metric callable and direction, all of which are used to instantiate a
metrics.Metric

• {“<metric name>”: “<sklearn metric name>”, . . . }: Where each key is a name for the
metric, and each value is the name of the attribute in sklearn.metrics for which the
corresponding key is an alias

• {“<metric name>”: None, . . . }: Where each key is the name of the attribute in
sklearn.metrics

• {“<metric name>”: Metric, . . . }: Where each key names an instance of metrics.
Metric. This is the internally-used format to which all other formats will be converted

Metric callable functions should expect inputs of form (target, prediction), and should return
floats. See the documentation of metrics.Metric for information regarding expected
parameters and types

holdout_dataset: Pandas.DataFrame, callable, str path, or None, default=None If
pd.DataFrame, this is the holdout dataset. If callable, expects a function that takes
(self.train: DataFrame, self.target_column: str) as input and returns the new (self.train:
DataFrame, self.holdout: DataFrame). If str, will attempt to read file at path via pandas.
read_csv(). Else, there is no holdout set. For more information on which columns will

8 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

be used during fitting/predicting, see the “Dataset columns” note in the “Notes” section
below

test_dataset: Pandas.DataFrame, str path, or None, default=None The testing data for the
experiment. Structure should be identical to that of train_dataset, except its target_column
column can be empty or non-existent, because test_dataset predictions will never be evalu-
ated. If str, will attempt to read file at path via pandas.read_csv(). For more infor-
mation on which columns will be used during fitting/predicting, see the “Dataset columns”
note in the “Notes” section below

target_column: Str, or list, default=’target’ If str, denotes the column name in all provided
datasets (except test) that contains the target output. If list, should be a list of strs des-
ignating multiple target columns. For example, in a multi-class classification dataset
like UCI’s hand-written digits, target_column would be a list containing ten strings. In
this example, the target_column data would be sparse, with a 1 to signify that a sam-
ple is a written example of a digit (0-9). For a working example, see ‘hyperparame-
ter_hunter/examples/lib_keras_multi_classification_example.py’

id_column: Str, or None, default=None If not None, str denoting the column name in all pro-
vided datasets containing sample IDs

do_predict_proba: Boolean, or int, default=False

• If False, models.Model.fit() will call models.Model.model.predict()

• If True, it will call models.Model.model.predict_proba(), and the values in
all columns will be used as the actual prediction values

• If do_predict_proba is an int, models.Model.fit() will call models.Model.
model.predict_proba(), as is the case when do_predict_proba is True, but the int
supplied as do_predict_proba declares the column index to use as the actual prediction
values

• For example, for a model to call the predict method, do_predict_proba=False (default).
For a model to call the predict_proba method, and use all of the class probabilities,
do_predict_proba=True. To call the predict_proba method, and use the class probabili-
ties in the first column, do_predict_proba=0. To use the second column (index 1) of the
result, do_predict_proba=1 - This often corresponds to the positive class’s probabilities
in binary classification problems. To use the third column do_predict_proba=2, and so
on

prediction_formatter: Callable, or None, default=None If callable, expected to have same
signature as utils.result_utils.format_predictions(). That is, the callable
will receive (raw_predictions: np.array, dataset_df: pd.DataFrame, target_column: str,
id_column: str or None) as input and should return a properly formatted prediction
DataFrame. The callable uses raw_predictions as the content, dataset_df to provide any
id column, and target_column to identify the column in which to place raw_predictions

metrics_params: Dict, or None, default=dict() Dictionary of extra parameters to provide to
metrics.ScoringMixIn.__init__(). metrics must be provided either 1) as an
input kwarg to Environment.__init__() (see metrics), or 2) as a key in met-
rics_params, but not both. An Exception will be raised if both are given, or if neither is
given

cv_type: Class or str, default=’KFold’ The class to define cross-validation splits. If str, it
must be an attribute of sklearn.model_selection._split, and it must be a cross-validation class
that inherits one of the following sklearn classes: BaseCrossValidator, or _RepeatedSplits.
Valid str values include ‘KFold’, and ‘RepeatedKFold’, although there are many more. It

4.1. Environment 9

hyperparameter_hunter Documentation, Release 3.0.0

must implement the following methods: [__init__, split]. If using a custom class, see the fol-
lowing tested sklearn classes for proper implementations: [KFold, StratifiedKFold, Repeat-
edKFold, RepeatedStratifiedKFold]. The arguments provided to cv_type.__init__()
will be Environment.cv_params, which should include the following: [‘n_splits’
<int>, ‘n_repeats’ <int> (if applicable)]. cv_type.split() will receive the fol-
lowing arguments: [BaseExperiment.train_input_data, BaseExperiment.
train_target_data]

runs: Int, default=1 The number of times to fit a model within each fold to perform multiple-
run-averaging with different random seeds

global_random_seed: Int, default=32 The initial random seed used just before generating an
Experiment’s random_seeds. This ensures consistency for random_seeds between Experi-
ments, without having to explicitly provide it here

random_seeds: None, or List, default=None If None, random_seeds of the appropriate shape
will be created automatically. Else, must be a list of ints of shape (cv_params[‘n_repeats’],
cv_params[‘n_splits’], runs). If cv_params does not have the key n_repeats (because stan-
dard cross-validation is being used), the value will default to 1. See experiments.
BaseExperiment._random_seed_initializer() for info on expected shape

random_seed_bounds: List, default=[0, 100000] A list containing two integers: the lower
and upper bounds, respectively, for generating an Experiment’s random seeds in
experiments.BaseExperiment._random_seed_initializer(). Generally,
leave this kwarg alone

cv_params: dict, or None, default=dict() Parameters provided upon initialization of cv_type.
Keys may be any args accepted by cv_type.__init__(). Number of fold splits must
be provided via “n_splits”, and number of repeats (if applicable for cv_type) must be pro-
vided via “n_repeats”

verbose: Int, boolean, default=3 Verbosity of printing for any experiments performed while
this Environment is active

Higher values indicate more frequent logging. Logs are still recorded in the heartbeat file
regardless of verbosity level. verbose only dictates which logs are visible in the console.
The following table illustrates which types of logging messages will be visible with each
verbosity level:

| Verbosity | Keys/IDs | Final Score | Repetitions* | Folds |
→˓Runs* | Run Starts* | Result Files | Other |
|:---------:|:--------:|:-----------:|:------------:|:-----:|:-----
→˓:|:-----------:|:------------:|:-----:|
| 0 | | | | |
→˓ | | | |
| 1 | Yes | Yes | | |
→˓ | | | |
| 2 | Yes | Yes | Yes | Yes |
→˓ | | | |
| 3 | Yes | Yes | Yes | Yes | Yes
→˓ | | | |
| 4 | Yes | Yes | Yes | Yes | Yes
→˓ | Yes | Yes | Yes |

*: If such logging is deemed appropriate with the given cross-validation parameters. In
other words, repetition/run logging will only be verbose if Environment was given more
than one repetition/run, respectively

file_blacklist: List of str, or None, or ‘ALL’, default=None If list of str, the result files named

10 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

within are not saved to their respective directory in “<ASSETS_DIRNAME>/Experiments”.
If None, all result files are saved. If ‘ALL’, nothing at all will be saved for the Experiments.
If the path of the file that initializes an Experiment does not end with a “.py” extension,
the Experiment proceeds as if “script_backup” had been added to file_blacklist. This means
that backup files will not be created for Jupyter notebooks (or any other non-“.py” files). For
info on acceptable values, see validate_file_blacklist()

reporting_params: Dict, default=dict() Parameters passed to initialize reporting.
ReportingHandler

to_csv_params: Dict, default=dict() Parameters passed to the calls to pandas.frame.
DataFrame.to_csv() in recorders. In particular, this is where an Experiment’s
final prediction files are saved, so the values here will affect the format of the .csv predic-
tion files. Warning: If to_csv_params contains the key “path_or_buf”, it will be removed.
Otherwise, all items are supplied directly to to_csv(), including kwargs it might not be
expecting if they are given

do_full_save: None, or callable, default=:func:‘utils.result_utils.default_do_full_save‘
If callable, expected to take an Experiment’s result description dict as input and return
a boolean. If None, treated as a callable that returns True. This parameter is used by
recorders.DescriptionRecorder to determine whether the Experiment result
files following the description should also be created. If do_full_save returns False, result
file-saving is stopped early, and only the description is saved. If do_full_save returns True,
all files not in file_blacklist are saved normally. This allows you to skip creation of an
Experiment’s predictions, logs, and heartbeats if its score does not meet some threshold you
set, for example. do_full_save receives the Experiment description dict as input, so for help
setting do_full_save, just look into one of your Experiment descriptions

experiment_callbacks: ‘LambdaCallback‘, or list of ‘LambdaCallback‘ (optional)
Callbacks injected directly into Experiments, adding new functionality, or customizing
existing processes. Should be a LambdaCallback or a list of such classes. Lambda-
Callback can be created using callbacks.bases.lambda_callback(), which
documents the options for creating callbacks. experiment_callbacks will be added to the
MRO of the executed Experiment class by experiment_core.ExperimentMeta
at __call__ time, making experiment_callbacks new base classes of the Experiment. See
callbacks.bases.lambda_callback() for more information. Note that the
Experiments conducted by OptPros will still benefit from experiment_callbacks. The
presence of LambdaCallbacks will affect neither Environment keys, nor Experiment keys.
In other words, for the purposes of Experiment matching/recording, all other factors being
equal, an Experiment with experiment_callbacks is considered identical to an Experiment
without, despite whatever custom functionality was added by the LambdaCallbacks

experiment_recorders: List, None, default=None If not None, may be a list whose values
are tuples of (<recorders.BaseRecorder descendant>, <str result_path>). The re-
sult_path str should be a path relative to results_path that specifies the directory/file in which
the product of the custom recorder should be saved. The contents of experiment_recorders
will be provided to recorders.RecorderList upon completion of an Experiment, and, if the
subclassing documentation in recorders is followed properly, will create or update a result
file for the just-executed Experiment

save_transformed_metrics: Boolean (optional) Declares manner in which a model’s predic-
tions should be evaluated through the provided metrics, with regard to target data transfor-
mations. This setting can be ignored if no transformation of the target variable takes place
(either through FeatureEngineer, EngineerStep, or otherwise).

The default value of save_transformed_metrics depends on the dtype of the target data in
train_dataset. If all target columns are numeric, save_transformed_metrics‘=False, mean-

4.1. Environment 11

hyperparameter_hunter Documentation, Release 3.0.0

ing metric evaluation should use the original/inverted targets and predictions. Else if
any target column is non-numeric, ‘save_transformed_metrics‘=True, meaning evaluation
should use the transformed targets and predictions because most metrics require numeric
inputs. This is described further in :attr:‘save_transformed_metrics. A more descriptive
name for this may be “calculate_metrics_using_transformed_predictions”, but that’s a bit
verbose–even by my standards

Other Parameters

cross_validation_type: . . .

• Alias for cv_type *

cross_validation_params: . . .

• Alias for cv_params *

metrics_map: . . .

• Alias for metrics *

reporting_handler_params: . . .

• Alias for reporting_params *

root_results_path: . . .

• Alias for results_path *

Notes

Dataset columns: In order to specify the columns to be used by the three dataset kwargs (train_dataset, hold-
out_dataset, test_dataset) during fitting and predicting, a few attributes can be used. On Environment ini-
tialization, the columns specified by the following kwargs will be separated from the rest of the dataset dur-
ing training/predicting: 1) target_column, which names the column containing the target output labels for
the input data; and 2) id_column, which (if given) represents the name of the column that contains iden-
tifying information for each data sample, and should otherwise have no relation to the actual data. Addi-
tionally, the feature_selector kwarg of the descendants of hyperparameter_hunter.experiments.
BaseExperiment (like hyperparameter_hunter.experiments.CVExperiment) is used to fil-
ter out columns of the given datasets prior to fitting. See its documentation for more information, but it can
effectively be used to remove any columns from the datasets

Overriding default kwargs at environment_params_path: If you have any of the above kwargs specified in
the .json file at environment_params_path (except environment_params_path, which will be ignored), you
can override its value by passing it as a kwarg when initializing Environment. The contents at environ-
ment_params_path are only used when the matching kwarg supplied at initialization is None. See “/exam-
ples/environment_params_path_example.py” for details

The order of precedence for determining the value of each parameter is as follows, with items at the top having
the highest priority, and deferring only to the items below if their own value is None:

• 1)kwargs passed directly to Environment.__init__() on initialization,

• 2)keys of the file at environment_params_path (if valid .json object),

• 3)keys of hyperparameter_hunter.environment.Environment.DEFAULT_PARAMS

do_predict_proba: Because this parameter can be either a boolean or an integer, it is important to explicitly pass
booleans rather than truthy or falsey values. Similarly, only pass integers if you intend for the value to be used
as a column index. Do not pass 0 to mean False, or 1 to mean True

Attributes

12 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

train_input: DatasetSentinel Sentinel replaced with current train input data dur-
ing Model fitting/predicting. Commonly given in the model_extra_params
kwargs of hyperparameter_hunter.experiments.BaseExperiment or
hyperparameter_hunter.optimization.protocol_core.BaseOptPro.
forge_experiment() for eval_set-like hyperparameters. Importantly, the actual value
of this Sentinel is determined after performing cross-validation data splitting, and after
executing FeatureEngineer

train_target: DatasetSentinel Like train_input, except for current train target data

validation_input: DatasetSentinel Like train_input, except for current validation input
data

validation_target: DatasetSentinel Like train_input, except for current validation target
data

holdout_input: DatasetSentinel Like train_input, except for current holdout input data

holdout_target: DatasetSentinel Like train_input, except for current holdout target data

Methods

environment_workflow(self) Execute all methods required to validate the environ-
ment and run Experiments

format_result_paths(self) Remove paths contained in file_blacklist, and format
others to prepare for saving results

generate_cross_experiment_key(self) Generate a key to describe the current Environment’s
cross-experiment parameters

initialize_reporting(self) Initialize reporting for the Environment and Experi-
ments conducted during its lifetime

update_custom_environment_params(self) Try to update null parameters from environ-
ment_params_path, or DEFAULT_PARAMS

validate_parameters(self) Ensure the provided parameters are valid and prop-
erly formatted

property save_transformed_metrics
If save_transformed_metrics is True, and target transformation does occur, then experiment metrics are
calculated using the transformed targets and predictions, which is the form returned directly by a fitted
model’s predict method. For example, if target data is label-encoded, and an feature_engineering.
EngineerStep is used to one-hot encode the target, then metrics functions will receive the following as
input: (one-hot-encoded targets, one-hot-encoded predictions).

Conversely, if save_transformed_metrics is False, and target transformation does occur, then exper-
iment metrics are calculated using the inverse of the transformed targets and predictions, which is
same form as the original target data. Continuing the example of label-encoded target data, and an
feature_engineering.EngineerStep to one-hot encode the target, in this case, metrics func-
tions will receive the following as input: (label-encoded targets, label-encoded predictions)

environment_workflow(self)
Execute all methods required to validate the environment and run Experiments

validate_parameters(self)
Ensure the provided parameters are valid and properly formatted

format_result_paths(self)
Remove paths contained in file_blacklist, and format others to prepare for saving results

4.1. Environment 13

hyperparameter_hunter Documentation, Release 3.0.0

update_custom_environment_params(self)
Try to update null parameters from environment_params_path, or DEFAULT_PARAMS

generate_cross_experiment_key(self)
Generate a key to describe the current Environment’s cross-experiment parameters

initialize_reporting(self)
Initialize reporting for the Environment and Experiments conducted during its lifetime

property train_input
Get a DatasetSentinel representing an Experiment’s fold_train_input

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.fold_train_input upon Model initializa-
tion

property train_target
Get a DatasetSentinel representing an Experiment’s fold_train_target

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.fold_train_target upon Model initializa-
tion

property validation_input
Get a DatasetSentinel representing an Experiment’s fold_validation_input

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.fold_validation_input upon Model ini-
tialization

property validation_target
Get a DatasetSentinel representing an Experiment’s fold_validation_target

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.fold_validation_target upon Model
initialization

property holdout_input
Get a DatasetSentinel representing an Experiment’s holdout_input_data

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.holdout_input_data upon Model initial-
ization

property holdout_target
Get a DatasetSentinel representing an Experiment’s holdout_target_data

Returns

DatasetSentinel: A Sentinel that will be converted to hyperparameter_hunter.
experiments.BaseExperiment.holdout_target_data upon Model initial-
ization

14 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

4.2 Experimentation

class hyperparameter_hunter.experiments.CVExperiment(model_initializer,
model_init_params=None,
model_extra_params=None,
feature_engineer=None,
feature_selector=None,
notes=None,
do_raise_repeated=False,
auto_start=True, tar-
get_metric=None, call-
backs=None)

Bases: hyperparameter_hunter.experiments.BaseCVExperiment

__init__(self, model_initializer, model_init_params=None, model_extra_params=None, fea-
ture_engineer=None, feature_selector=None, notes=None, do_raise_repeated=False,
auto_start=True, target_metric=None, callbacks=None)

One-off Experimentation base class

Bare-bones Description: Runs the cross-validation scheme defined by Environment, during which
1) Datasets are processed according to feature_engineer; 2) Models are built by instantiating
model_initializer with model_init_params; 3) Models are trained on processed data, optionally using pa-
rameters from model_extra_params; 4) Results are logged and recorded for each fitting period; 5) Descrip-
tions, predictions, results (both averages and individual periods), etc. are saved.

What’s the Big Deal? The most important takeaway from the above description is that descriptions/results
are THOROUGH and REUSABLE. By thorough, I mean that all of a model’s hyperparameters are saved,
not just the ones given in model_init_params. This may sound odd, but it’s important because it makes
results reusable during optimization, when you may be using a different set of hyperparameters. It helps
with other things like preventing duplicate experiments and ensembling, as well. But the big part is that this
transforms hyperparameter optimization from an isolated, throwaway process we can only afford when an
ML project is sufficiently “mature” to a process that covers the entire lifespan of a project. No Experiment
is forgotten or wasted. Optimization is automatically given the data it needs to succeed by drawing on all
your past Experiments and optimization rounds.

The Experiment has three primary missions: 1. Act as scaffold for organizing ML Experimentation and
optimization 2. Record Experiment descriptions and results 3. Eliminate lots of repetitive/error-prone
boilerplate code

Providing a scaffold for the entire ML process is critical because without a standardized format, every-
thing we do looks different. Without a unified scaffold, development is slower, more confusing, and less
adaptable. One of the benefits of standardizing the format of ML Experimentation is that it enables us to
exhaustively record all the important characteristics of Experiment, as well as an assortment of customiz-
able result files – all in a way that allows them to be reused in the future.

What About Data/Metrics? Experiments require an active Environment in order to function,
from which the Experiment collects important cross-experiment parameters, such as datasets, metrics,
cross-validation schemes, and even callbacks to inherit, among many other properties documented in
Environment

Parameters

model_initializer: Class, or functools.partial, or class instance Algorithm class used to
initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s KNeighborsClas-
sifier; although, there are hundreds of possibilities across many different ML libraries.
model_initializer is expected to define at least fit and predict methods. model_initializer
will be initialized with model_init_params, and its “extra” methods (fit, predict, etc.) will
be invoked with parameters in model_extra_params

4.2. Experimentation 15

hyperparameter_hunter Documentation, Release 3.0.0

model_init_params: Dict, or object (optional) Dictionary of arguments given to create an
instance of model_initializer. Any kwargs that are considered valid by the __init__ method
of model_initializer are valid in model_init_params.

One of the key features that makes HyperparameterHunter so magical is that ALL hyper-
parameters in the signature of model_initializer (and their default values) are discovered
– whether or not they are explicitly given in model_init_params. Not only does this make
Experiment result descriptions incredibly thorough, it also makes optimization smoother,
more effective, and far less work for the user. For example, take LightGBM’s LGBMRe-
gressor, with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRegressor is
actually initialized with more than a dozen other hyperparameters we didn’t bother men-
tioning, and it records their values, too. So if we want to optimize num_leaves tomorrow,
the OptPro doesn’t start from scratch. It knows that we ran an Experiment that didn’t
explicitly mention num_leaves, but its default value was 31, and it uses this information
to fuel optimization – all without us having to manually keep track of tons of janky col-
lections of hyperparameters. In fact, we really don’t need to go out of our way at all.
HyperparameterHunter just acts as our faithful lab assistant, keeping track of all the stuff
we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for mod-
els’ non-initialization methods (like fit, predict, predict_proba, etc.), and
for neural networks. To specify parameters for an extra method, place
them in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,
documented under its “Attributes” section and under train_input. An exam-
ple using several DatasetSentinels can be found in HyperparameterHunter’s [XG-
Boost Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined in
Environment. If list, will be used to initialize FeatureEngineer, and can
contain any of the following values:

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

For important information on properly formatting EngineerStep functions, please see the
documentation of EngineerStep. OptPros can perform hyperparameter optimization
of feature_engineer steps. This capability adds a third allowed value to the above list and
is documented in forge_experiment()

feature_selector: List of str, callable, or list of booleans (optional) Column names to in-
clude as input data for all provided DataFrames. If None, feature_selector is set to
all columns in train_dataset, less target_column, and id_column. fea-
ture_selector is provided as the second argument for calls to pandas.DataFrame.loc when
constructing datasets

notes: String (optional) Additional information about the Experiment that will be saved
with the Experiment’s description result file. This serves no purpose other than to facilitate
saving Experiment details in a more readable format

16 Chapter 4. HyperparameterHunter API Essentials

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

do_raise_repeated: Boolean, default=False If True and this Experiment locates a previous
Experiment’s results with matching Environment and Hyperparameter Keys, a Repeated-
ExperimentError will be raised. Else, a warning will be logged

auto_start: Boolean, default=True If True, after the Experiment is initialized, it will
automatically call BaseExperiment.preparation_workflow(), followed by
BaseExperiment.experiment_workflow(), effectively completing all essential
tasks without requiring additional method calls

target_metric: Tuple, str, default=(‘oof’, <:attr:‘environment.Environment.metrics‘[0]>)
Path denoting the metric to be used to compare completed Experiments or to use for
certain early stopping procedures in some model classes. The first value should be
one of [‘oof’, ‘holdout’, ‘in_fold’]. The second value should be the name of a metric
being recorded according to the values supplied in hyperparameter_hunter.
environment.Environment.metrics_params. See the documentation for
hyperparameter_hunter.metrics.get_formatted_target_metric()
for more info. Any values returned by, or used as the target_metric input to this function
are acceptable values for target_metric

callbacks: ‘LambdaCallback‘, or list of ‘LambdaCallback‘ (optional) Callbacks in-
jected directly into concrete Experiment (CVExperiment), adding new functionality, or
customizing existing processes. Should be a LambdaCallback or a list of such classes.
LambdaCallback can be created using callbacks.bases.lambda_callback(),
which documents the options for creating callbacks. callbacks will be added to the
MRO of the Experiment by experiment_core.ExperimentMeta at __call__
time, making callbacks new base classes of the Experiment. See callbacks.bases.
lambda_callback() for more information. The presence of LambdaCallbacks will
not affect Experiment keys. In other words, for the purposes of Experiment match-
ing/recording, all other factors being equal, an Experiment with callbacks is considered
identical to an Experiment without, despite whatever custom functionality was added by
the LambdaCallbacks

See also:

hyperparameter_hunter.optimization.protocol_core.BaseOptPro.forge_experiment()
OptPro method to define hyperparameter search scaffold for building Experiments during optimiza-
tion. This method follows the same format as Experiment initialization, but it adds the ability to
provide hyperparameter values as ranges to search over, via subclasses of Dimension. The other
notable difference is that forge_experiment removes the auto_start and target_metric kwargs, which
is described in the forge_experiment docstring Notes

Environment Provides critical information on how Experiments should be conducted, as well as the
data to be used by Experiments. An Environment must be active before executing any Experiment or
OptPro

lambda_callback() Enables customization of the Experimentation process and access to all Experi-
ment internals through a collection of methods that are invoked at all the important periods over an Ex-
periment’s lifespan. These can be provided via the experiment_callbacks kwarg of Environment,
and the callback classes literally get thrown in to the parent classes of the Experiment, so they’re kind
of a big deal

4.2. Experimentation 17

hyperparameter_hunter Documentation, Release 3.0.0

4.3 Hyperparameter Optimization

class hyperparameter_hunter.optimization.backends.skopt.protocols.BayesianOptPro(target_metric=None,
it-
er-
a-
tions=1,
ver-
bose=1,
read_experiments=True,
re-
porter_parameters=None,
warn_on_re_ask=False,
base_estimator=’GP’,
n_initial_points=10,
ac-
qui-
si-
tion_function=’gp_hedge’,
ac-
qui-
si-
tion_optimizer=’auto’,
ran-
dom_state=32,
ac-
qui-
si-
tion_function_kwargs=None,
ac-
qui-
si-
tion_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’,
call-
backs=None,
base_estimator_kwargs=None)

Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Bayesian optimization with Gaussian Processes

Attributes

search_space_size The number of different hyperparameter permutations possible given
the current

source_script

Methods

forge_experiment(self, model_initializer[,
. . .])

Define hyperparameter search scaffold for building
Experiments during optimization

Continued on next page

18 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Table 2 – continued from previous page
get_ready(self) Prepare for optimization by finalizing hyperparame-

ter space and identifying similar Experiments.
go(self[, force_ready]) Execute hyperparameter optimization, building an

Experiment for each iteration
set_dimensions(self) Locate given hyperparameters that are space choice

declarations and add them to dimensions
set_experiment_guidelines(self, *args,
. . .)

Deprecated since version 3.0.0a2.

__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True,
reporter_parameters=None, warn_on_re_ask=False, base_estimator=’GP’,
n_initial_points=10, acquisition_function=’gp_hedge’, acquisition_optimizer=’auto’, ran-
dom_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’, callbacks=None, base_estimator_kwargs=None)

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be invoked after initialization:

1. forge_experiment()

2. go()

Parameters

target_metric: Tuple, default=(“oof”, <:attr:‘environment.Environment.metrics‘[0]>)
Rarely necessary to explicitly provide this, as the default is usually sufficient. Path denot-
ing the metric to be used to compare Experiment performance. The first value should be
one of [“oof”, “holdout”, “in_fold”]. The second value should be the name of a metric
being recorded according to environment.Environment.metrics_params.
See the documentation for metrics.get_formatted_target_metric()
for more info. Any values returned by, or given as the target_metric input to,
get_formatted_target_metric() are acceptable values for BaseOptPro.
target_metric

iterations: Int, default=1 Number of Experiments to conduct during optimization upon in-
voking BaseOptPro.go()

verbose: {0, 1, 2}, default=1 Verbosity mode for console logging. 0: Silent. 1: Show only
logs from the Optimization Protocol. 2: In addition to logs shown when verbose=1, also
show the logs from individual Experiments

read_experiments: Boolean, default=True If True, all Experiment records that fit in the
current space and guidelines, and match algorithm_name, will be read in and used
to fit any optimizers

reporter_parameters: Dict, or None, default=None Additional parameters passed to
reporting.OptimizationReporter.__init__(). Note: Unless provided ex-
plicitly, the key “do_maximize” will be added by default to reporter_params, with a value
inferred from the direction of target_metric in G.Env.metrics. In nearly all cases, the
“do_maximize” key should be ignored, as there are very few reasons to explicitly include
it

warn_on_re_ask: Boolean, default=False If True, and the internal optimizer recommends
a point that has already been evaluated on invocation of ask, a warning is logged before
recommending a random point. Either way, a random point is used instead of already-
evaluated recommendations. However, logging the fact that this has taken place can be
useful to indicate that the optimizer may be stalling, especially if it repeatedly recommends

4.3. Hyperparameter Optimization 19

hyperparameter_hunter Documentation, Release 3.0.0

the same point. In these cases, if the suggested point is not optimal, it can be helpful to
switch a different OptPro (especially DummyOptPro), which will suggest points using
different criteria

Other Parameters

base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
If not string, should inherit from sklearn.base.RegressorMixin. In addition, the predict
method should have an optional return_std argument, which returns std(Y | x), along with
E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a surrogate
model corresponding to the relevant X_minimize function is created

n_initial_points: Int, default=10 Number of complete evaluation points necessary before
allowing Experiments to be approximated with base_estimator. Any valid Experiment
records found will count as initialization points. If enough Experiment records are not
found, additional points will be randomly sampled

acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge” Function
to minimize over the posterior distribution. Can be any of the following:

• “LCB”: Lower confidence bound

• “EI”: Negative expected improvement

• “PI”: Negative probability of improvement

• “gp_hedge”: Probabilistically choose one of the above three acquisition functions at
every iteration

– The gains g_i are initialized to zero

– At every iteration,

* Each acquisition function is optimised independently to propose a candidate point
X_i

* Out of all these candidate points, the next point X_best is chosen by softmax(eta
g_i)

* After fitting the surrogate model with (X_best, y_best), the gains are updated such
that g_i -= mu(X_i)

acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto” Method to mini-
mize the acquisition function. The fit model is updated with the optimal value obtained by
optimizing acq_func with acq_optimizer

• “sampling”: acq_func is optimized by computing acq_func at n_initial_points ran-
domly sampled points.

• “lbfgs”: acq_func is optimized by

– Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs) points

– “lbfgs” is run for 20 iterations with these initial points to find local minima

– The optimal of these local minima is used to update the prior

• “auto”: acq_optimizer is configured on the basis of the base_estimator and the search
space. If the space is Categorical or if the provided estimator is based on tree-models,
then this is set to “sampling”

random_state: Int, ‘RandomState‘ instance, or None, default=None Set to something
other than None for reproducible results

20 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
Additional arguments passed to the acquisition function

acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
Additional arguments passed to the acquisition optimizer

n_random_starts: . . . Deprecated since version 3.0.0: Use n_initial_points, instead. Will
be removed in 3.2.0

callbacks: Callable, list of callables, or None, default=[] If callable, then call-
backs(self.optimizer_result) is called after each update to optimizer. If list, then
each callable is called

base_estimator_kwargs: Dict, or None, default={} Additional arguments passed to
base_estimator when it is initialized

Notes

To provide initial input points for evaluation, individual Experiments can be executed prior to instantiating
an Optimization Protocol. The results of these Experiments will automatically be detected and cherished
by the optimizer.

SKOptPro and its children in optimization rely heavily on the utilities provided by the Scikit-
Optimize library, so thank you to the creators and contributors for their excellent work.

Methods

forge_experiment Define constraints on Experiments conducted by OptPro (like hyperparameter
search space)

go Start optimization

forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None,
feature_engineer=None, feature_selector=None, notes=None,
do_raise_repeated=True)

Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it accepts hyperparame-
ters not only as concrete values, but also as space choices – using Real, Integer, and Categorical.
This functionality applies to the model_init_params, model_extra_params and feature_engineer kwargs.
Any Dimensions provided to forge_experiment are detected by the OptPro and used to define the hyper-
parameter search space to be optimized

Parameters

model_initializer: Class, or functools.partial, or class instance Algorithm class
used to initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s
KNeighborsClassifier; although, there are hundreds of possibilities across many
different ML libraries. model_initializer is expected to define at least fit and
predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params

model_init_params: Dict, or object (optional) Dictionary of arguments given to cre-
ate an instance of model_initializer. Any kwargs that are considered valid by the
__init__ method of model_initializer are valid in model_init_params.

4.3. Hyperparameter Optimization 21

hyperparameter_hunter Documentation, Release 3.0.0

In addition to providing concrete values, hyperparameters can be expressed as
choices (dimensions to optimize) by using instances of Real, Integer, or
Categorical. Furthermore, hyperparameter choices and concrete values can
be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params
kwarg of CVExperiment is limited to using concrete val-
ues, such as dict(max_depth=10, learning_rate=0.
1, booster="gbtree"). This is still valid for
forge_experiment(). However, forge_experiment() also al-
lows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.
001, 0.5), booster=Categorical(["gbtree", "dart"])),
or as any combination of concrete values and choices, for instance,
dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is
that ALL hyperparameters in the signature of model_initializer (and their de-
fault values) are discovered – whether or not they are explicitly given in
model_init_params. Not only does this make Experiment result descriptions
incredibly thorough, it also makes optimization smoother, more effective, and
far less work for the user. For example, take LightGBM’s LGBMRegressor,
with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRe-
gressor is actually initialized with more than a dozen other hyperparameters we
didn’t bother mentioning, and it records their values, too. So if we want to opti-
mize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows that
we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us hav-
ing to manually keep track of tons of janky collections of hyperparameters. In fact,
we really don’t need to go out of our way at all. HyperparameterHunter just acts as
our faithful lab assistant, keeping track of all the stuff we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for models’
non-initialization methods (like fit, predict, predict_proba, etc.), and for neu-
ral networks. To specify parameters for an extra method, place them
in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params,
meaning that in addition to concrete values, extra parameters can be
given as instances of Real, Integer, or Categorical. To opti-
mize over a space in which early_stopping_rounds is between 3 and 9, use
model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,
documented under its “Attributes” section and under train_input. An example
using several DatasetSentinels can be found in HyperparameterHunter’s [XGBoost
Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined
in Environment. If list, will be used to initialize FeatureEngineer, and

22 Chapter 4. HyperparameterHunter API Essentials

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

can contain any of the following values:

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

3. Categorical, with categories comprising a selection of the previous two
values (optimization only)

For important information on properly formatting EngineerStep functions, please
see the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is illustrated in FeatureEngineer. If us-
ing a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices

feature_selector: List of str, callable, or list of booleans (optional) Column names
to include as input data for all provided DataFrames. If None, feature_selector
is set to all columns in train_dataset, less target_column, and
id_column. feature_selector is provided as the second argument for calls to
pandas.DataFrame.loc when constructing datasets

notes: String (optional) Additional information about the Experiment that will be
saved with the Experiment’s description result file. This serves no purpose other
than to facilitate saving Experiment details in a more readable format

do_raise_repeated: Boolean, default=False If True and this Experiment locates a
previous Experiment’s results with matching Environment and Hyperparameter
Keys, a RepeatedExperimentError will be raised. Else, a warning will be logged

See also:

hyperparameter_hunter.experiments.BaseExperiment One-off experimentation coun-
terpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed argu-
ments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place
in _execute_experiment()

Notes

The auto_start kwarg is not available here because _execute_experiment() sets it to False in
order to check for duplicated keys before running the whole Experiment. This and target_metric being
moved to __init__() are the most notable differences between calling forge_experiment() and
instantiating CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However, forge_experiment sounds
cooler and much less clunky

go(self, force_ready=True)
Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines experiment
guidelines and search dimensions. go performs a few important tasks: 1) Formally setting the hyperpa-
rameter space; 2) Locating similar experiments to be used as learning material (for OptPros that suggest
incumbent search points by estimating utilities using surrogate models); and 3) Actually setting off the
optimization process, via _optimization_loop()

Parameters

4.3. Hyperparameter Optimization 23

hyperparameter_hunter Documentation, Release 3.0.0

force_ready: Boolean, default=False If True, get_ready() will be invoked even
if it has already been called. This will re-initialize the hyperparameter space and
similar_experiments. Standard behavior is for go() to invoke get_ready(), so
force_ready is ignored unless get_ready() has been manually invoked

class hyperparameter_hunter.optimization.backends.skopt.protocols.GradientBoostedRegressionTreeOptPro(target_metric=None,
it-
er-
a-
tions=1,
ver-
bose=1,
read_experiments=True,
re-
porter_parameters=None,
warn_on_re_ask=False,
base_estimator=’GBRT’,
n_initial_points=10,
ac-
qui-
si-
tion_function=’EI’,
ac-
qui-
si-
tion_optimizer=’sampling’,
ran-
dom_state=32,
ac-
qui-
si-
tion_function_kwargs=None,
ac-
qui-
si-
tion_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’,
call-
backs=None,
base_estimator_kwargs=None)

Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with gradient boosted regression trees
Attributes

search_space_size The number of different hyperparameter permutations possible
given the current

source_script

Methods

24 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

forge_experiment(self, model_initializer[,
. . .])

Define hyperparameter search scaffold for building
Experiments during optimization

get_ready(self) Prepare for optimization by finalizing hyperparame-
ter space and identifying similar Experiments.

go(self[, force_ready]) Execute hyperparameter optimization, building an
Experiment for each iteration

set_dimensions(self) Locate given hyperparameters that are space choice
declarations and add them to dimensions

set_experiment_guidelines(self, *args,
. . .)

Deprecated since version 3.0.0a2.

__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, re-
porter_parameters=None, warn_on_re_ask=False, base_estimator=’GBRT’,
n_initial_points=10, acquisition_function=’EI’, acquisition_optimizer=’sampling’, ran-
dom_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’, callbacks=None, base_estimator_kwargs=None)

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be invoked after initializa-
tion:

1. forge_experiment()

2. go()

Parameters

target_metric: Tuple, default=(“oof”, <:attr:‘environment.Environment.metrics‘[0]>)
Rarely necessary to explicitly provide this, as the default is usually sufficient.
Path denoting the metric to be used to compare Experiment performance. The
first value should be one of [“oof”, “holdout”, “in_fold”]. The second value
should be the name of a metric being recorded according to environment.
Environment.metrics_params. See the documentation for metrics.
get_formatted_target_metric() for more info. Any values returned by,
or given as the target_metric input to, get_formatted_target_metric()
are acceptable values for BaseOptPro.target_metric

iterations: Int, default=1 Number of Experiments to conduct during optimization
upon invoking BaseOptPro.go()

verbose: {0, 1, 2}, default=1 Verbosity mode for console logging. 0: Silent. 1: Show
only logs from the Optimization Protocol. 2: In addition to logs shown when
verbose=1, also show the logs from individual Experiments

read_experiments: Boolean, default=True If True, all Experiment records that fit in
the current space and guidelines, and match algorithm_name, will be read in
and used to fit any optimizers

reporter_parameters: Dict, or None, default=None Additional parameters passed
to reporting.OptimizationReporter.__init__(). Note: Unless
provided explicitly, the key “do_maximize” will be added by default to re-
porter_params, with a value inferred from the direction of target_metric in
G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored, as
there are very few reasons to explicitly include it

warn_on_re_ask: Boolean, default=False If True, and the internal optimizer recom-
mends a point that has already been evaluated on invocation of ask, a warning is

4.3. Hyperparameter Optimization 25

hyperparameter_hunter Documentation, Release 3.0.0

logged before recommending a random point. Either way, a random point is used
instead of already-evaluated recommendations. However, logging the fact that this
has taken place can be useful to indicate that the optimizer may be stalling, espe-
cially if it repeatedly recommends the same point. In these cases, if the suggested
point is not optimal, it can be helpful to switch a different OptPro (especially Dum-
myOptPro), which will suggest points using different criteria

Other Parameters

base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns std(Y
| x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a
surrogate model corresponding to the relevant X_minimize function is created

n_initial_points: Int, default=10 Number of complete evaluation points necessary
before allowing Experiments to be approximated with base_estimator. Any valid
Experiment records found will count as initialization points. If enough Experiment
records are not found, additional points will be randomly sampled

acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
Function to minimize over the posterior distribution. Can be any of the following:

• “LCB”: Lower confidence bound

• “EI”: Negative expected improvement

• “PI”: Negative probability of improvement

• “gp_hedge”: Probabilistically choose one of the above three acquisition func-
tions at every iteration

– The gains g_i are initialized to zero

– At every iteration,

* Each acquisition function is optimised independently to propose a candi-
date point X_i

* Out of all these candidate points, the next point X_best is chosen by soft-
max(eta g_i)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that g_i -= mu(X_i)

acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto” Method to
minimize the acquisition function. The fit model is updated with the optimal value
obtained by optimizing acq_func with acq_optimizer

• “sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.

• “lbfgs”: acq_func is optimized by

– Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs)
points

– “lbfgs” is run for 20 iterations with these initial points to find local minima

– The optimal of these local minima is used to update the prior

26 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

• “auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based
on tree-models, then this is set to “sampling”

random_state: Int, ‘RandomState‘ instance, or None, default=None Set to some-
thing other than None for reproducible results

acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
Additional arguments passed to the acquisition function

acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
Additional arguments passed to the acquisition optimizer

n_random_starts: . . . Deprecated since version 3.0.0: Use n_initial_points, instead.
Will be removed in 3.2.0

callbacks: Callable, list of callables, or None, default=[] If callable, then call-
backs(self.optimizer_result) is called after each update to optimizer. If list,
then each callable is called

base_estimator_kwargs: Dict, or None, default={} Additional arguments passed to
base_estimator when it is initialized

Notes

To provide initial input points for evaluation, individual Experiments can be executed prior to instantiating
an Optimization Protocol. The results of these Experiments will automatically be detected and cherished
by the optimizer.

SKOptPro and its children in optimization rely heavily on the utilities provided by the Scikit-
Optimize library, so thank you to the creators and contributors for their excellent work.

Methods

forge_experiment Define constraints on Experiments conducted by OptPro (like hyperparameter
search space)

go Start optimization

forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None,
feature_engineer=None, feature_selector=None, notes=None,
do_raise_repeated=True)

Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it accepts hyperparame-
ters not only as concrete values, but also as space choices – using Real, Integer, and Categorical.
This functionality applies to the model_init_params, model_extra_params and feature_engineer kwargs.
Any Dimensions provided to forge_experiment are detected by the OptPro and used to define the hyper-
parameter search space to be optimized

Parameters

model_initializer: Class, or functools.partial, or class instance Algorithm class
used to initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s
KNeighborsClassifier; although, there are hundreds of possibilities across many
different ML libraries. model_initializer is expected to define at least fit and

4.3. Hyperparameter Optimization 27

hyperparameter_hunter Documentation, Release 3.0.0

predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params

model_init_params: Dict, or object (optional) Dictionary of arguments given to cre-
ate an instance of model_initializer. Any kwargs that are considered valid by the
__init__ method of model_initializer are valid in model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as
choices (dimensions to optimize) by using instances of Real, Integer, or
Categorical. Furthermore, hyperparameter choices and concrete values can
be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params
kwarg of CVExperiment is limited to using concrete val-
ues, such as dict(max_depth=10, learning_rate=0.
1, booster="gbtree"). This is still valid for
forge_experiment(). However, forge_experiment() also al-
lows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.
001, 0.5), booster=Categorical(["gbtree", "dart"])),
or as any combination of concrete values and choices, for instance,
dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is
that ALL hyperparameters in the signature of model_initializer (and their de-
fault values) are discovered – whether or not they are explicitly given in
model_init_params. Not only does this make Experiment result descriptions
incredibly thorough, it also makes optimization smoother, more effective, and
far less work for the user. For example, take LightGBM’s LGBMRegressor,
with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRe-
gressor is actually initialized with more than a dozen other hyperparameters we
didn’t bother mentioning, and it records their values, too. So if we want to opti-
mize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows that
we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us hav-
ing to manually keep track of tons of janky collections of hyperparameters. In fact,
we really don’t need to go out of our way at all. HyperparameterHunter just acts as
our faithful lab assistant, keeping track of all the stuff we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for models’
non-initialization methods (like fit, predict, predict_proba, etc.), and for neu-
ral networks. To specify parameters for an extra method, place them
in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params,
meaning that in addition to concrete values, extra parameters can be
given as instances of Real, Integer, or Categorical. To opti-
mize over a space in which early_stopping_rounds is between 3 and 9, use
model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,

28 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

documented under its “Attributes” section and under train_input. An example
using several DatasetSentinels can be found in HyperparameterHunter’s [XGBoost
Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined
in Environment. If list, will be used to initialize FeatureEngineer, and
can contain any of the following values:

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

3. Categorical, with categories comprising a selection of the previous two
values (optimization only)

For important information on properly formatting EngineerStep functions, please
see the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is illustrated in FeatureEngineer. If us-
ing a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices

feature_selector: List of str, callable, or list of booleans (optional) Column names
to include as input data for all provided DataFrames. If None, feature_selector
is set to all columns in train_dataset, less target_column, and
id_column. feature_selector is provided as the second argument for calls to
pandas.DataFrame.loc when constructing datasets

notes: String (optional) Additional information about the Experiment that will be
saved with the Experiment’s description result file. This serves no purpose other
than to facilitate saving Experiment details in a more readable format

do_raise_repeated: Boolean, default=False If True and this Experiment locates a
previous Experiment’s results with matching Environment and Hyperparameter
Keys, a RepeatedExperimentError will be raised. Else, a warning will be logged

See also:

hyperparameter_hunter.experiments.BaseExperiment One-off experimentation coun-
terpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed argu-
ments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place
in _execute_experiment()

Notes

The auto_start kwarg is not available here because _execute_experiment() sets it to False in
order to check for duplicated keys before running the whole Experiment. This and target_metric being
moved to __init__() are the most notable differences between calling forge_experiment() and
instantiating CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However, forge_experiment sounds
cooler and much less clunky

go(self, force_ready=True)
Execute hyperparameter optimization, building an Experiment for each iteration

4.3. Hyperparameter Optimization 29

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

This method may only be invoked after invoking forge_experiment(), which defines experiment
guidelines and search dimensions. go performs a few important tasks: 1) Formally setting the hyperpa-
rameter space; 2) Locating similar experiments to be used as learning material (for OptPros that suggest
incumbent search points by estimating utilities using surrogate models); and 3) Actually setting off the
optimization process, via _optimization_loop()

Parameters

force_ready: Boolean, default=False If True, get_ready() will be invoked even
if it has already been called. This will re-initialize the hyperparameter space and
similar_experiments. Standard behavior is for go() to invoke get_ready(), so
force_ready is ignored unless get_ready() has been manually invoked

class hyperparameter_hunter.optimization.backends.skopt.protocols.RandomForestOptPro(target_metric=None,
it-
er-
a-
tions=1,
ver-
bose=1,
read_experiments=True,
re-
porter_parameters=None,
warn_on_re_ask=False,
base_estimator=’RF’,
n_initial_points=10,
ac-
qui-
si-
tion_function=’EI’,
ac-
qui-
si-
tion_optimizer=’sampling’,
ran-
dom_state=32,
ac-
qui-
si-
tion_function_kwargs=None,
ac-
qui-
si-
tion_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’,
call-
backs=None,
base_estimator_kwargs=None)

Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with random forest regressor decision trees
Attributes

search_space_size The number of different hyperparameter permutations possible
given the current

30 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

source_script

Methods

forge_experiment(self, model_initializer[,
. . .])

Define hyperparameter search scaffold for building
Experiments during optimization

get_ready(self) Prepare for optimization by finalizing hyperparame-
ter space and identifying similar Experiments.

go(self[, force_ready]) Execute hyperparameter optimization, building an
Experiment for each iteration

set_dimensions(self) Locate given hyperparameters that are space choice
declarations and add them to dimensions

set_experiment_guidelines(self, *args,
. . .)

Deprecated since version 3.0.0a2.

__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True,
reporter_parameters=None, warn_on_re_ask=False, base_estimator=’RF’,
n_initial_points=10, acquisition_function=’EI’, acquisition_optimizer=’sampling’, ran-
dom_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’, callbacks=None, base_estimator_kwargs=None)

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be invoked after initializa-
tion:

1. forge_experiment()

2. go()

Parameters

target_metric: Tuple, default=(“oof”, <:attr:‘environment.Environment.metrics‘[0]>)
Rarely necessary to explicitly provide this, as the default is usually sufficient.
Path denoting the metric to be used to compare Experiment performance. The
first value should be one of [“oof”, “holdout”, “in_fold”]. The second value
should be the name of a metric being recorded according to environment.
Environment.metrics_params. See the documentation for metrics.
get_formatted_target_metric() for more info. Any values returned by,
or given as the target_metric input to, get_formatted_target_metric()
are acceptable values for BaseOptPro.target_metric

iterations: Int, default=1 Number of Experiments to conduct during optimization
upon invoking BaseOptPro.go()

verbose: {0, 1, 2}, default=1 Verbosity mode for console logging. 0: Silent. 1: Show
only logs from the Optimization Protocol. 2: In addition to logs shown when
verbose=1, also show the logs from individual Experiments

read_experiments: Boolean, default=True If True, all Experiment records that fit in
the current space and guidelines, and match algorithm_name, will be read in
and used to fit any optimizers

reporter_parameters: Dict, or None, default=None Additional parameters passed
to reporting.OptimizationReporter.__init__(). Note: Unless
provided explicitly, the key “do_maximize” will be added by default to re-
porter_params, with a value inferred from the direction of target_metric in

4.3. Hyperparameter Optimization 31

hyperparameter_hunter Documentation, Release 3.0.0

G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored, as
there are very few reasons to explicitly include it

warn_on_re_ask: Boolean, default=False If True, and the internal optimizer recom-
mends a point that has already been evaluated on invocation of ask, a warning is
logged before recommending a random point. Either way, a random point is used
instead of already-evaluated recommendations. However, logging the fact that this
has taken place can be useful to indicate that the optimizer may be stalling, espe-
cially if it repeatedly recommends the same point. In these cases, if the suggested
point is not optimal, it can be helpful to switch a different OptPro (especially Dum-
myOptPro), which will suggest points using different criteria

Other Parameters

base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns std(Y
| x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a
surrogate model corresponding to the relevant X_minimize function is created

n_initial_points: Int, default=10 Number of complete evaluation points necessary
before allowing Experiments to be approximated with base_estimator. Any valid
Experiment records found will count as initialization points. If enough Experiment
records are not found, additional points will be randomly sampled

acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
Function to minimize over the posterior distribution. Can be any of the following:

• “LCB”: Lower confidence bound

• “EI”: Negative expected improvement

• “PI”: Negative probability of improvement

• “gp_hedge”: Probabilistically choose one of the above three acquisition func-
tions at every iteration

– The gains g_i are initialized to zero

– At every iteration,

* Each acquisition function is optimised independently to propose a candi-
date point X_i

* Out of all these candidate points, the next point X_best is chosen by soft-
max(eta g_i)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that g_i -= mu(X_i)

acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto” Method to
minimize the acquisition function. The fit model is updated with the optimal value
obtained by optimizing acq_func with acq_optimizer

• “sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.

• “lbfgs”: acq_func is optimized by

– Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs)
points

32 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

– “lbfgs” is run for 20 iterations with these initial points to find local minima

– The optimal of these local minima is used to update the prior

• “auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based
on tree-models, then this is set to “sampling”

random_state: Int, ‘RandomState‘ instance, or None, default=None Set to some-
thing other than None for reproducible results

acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
Additional arguments passed to the acquisition function

acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
Additional arguments passed to the acquisition optimizer

n_random_starts: . . . Deprecated since version 3.0.0: Use n_initial_points, instead.
Will be removed in 3.2.0

callbacks: Callable, list of callables, or None, default=[] If callable, then call-
backs(self.optimizer_result) is called after each update to optimizer. If list,
then each callable is called

base_estimator_kwargs: Dict, or None, default={} Additional arguments passed to
base_estimator when it is initialized

Notes

To provide initial input points for evaluation, individual Experiments can be executed prior to instantiating
an Optimization Protocol. The results of these Experiments will automatically be detected and cherished
by the optimizer.

SKOptPro and its children in optimization rely heavily on the utilities provided by the Scikit-
Optimize library, so thank you to the creators and contributors for their excellent work.

Methods

forge_experiment Define constraints on Experiments conducted by OptPro (like hyperparameter
search space)

go Start optimization

forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None,
feature_engineer=None, feature_selector=None, notes=None,
do_raise_repeated=True)

Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it accepts hyperparame-
ters not only as concrete values, but also as space choices – using Real, Integer, and Categorical.
This functionality applies to the model_init_params, model_extra_params and feature_engineer kwargs.
Any Dimensions provided to forge_experiment are detected by the OptPro and used to define the hyper-
parameter search space to be optimized

Parameters

4.3. Hyperparameter Optimization 33

hyperparameter_hunter Documentation, Release 3.0.0

model_initializer: Class, or functools.partial, or class instance Algorithm class
used to initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s
KNeighborsClassifier; although, there are hundreds of possibilities across many
different ML libraries. model_initializer is expected to define at least fit and
predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params

model_init_params: Dict, or object (optional) Dictionary of arguments given to cre-
ate an instance of model_initializer. Any kwargs that are considered valid by the
__init__ method of model_initializer are valid in model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as
choices (dimensions to optimize) by using instances of Real, Integer, or
Categorical. Furthermore, hyperparameter choices and concrete values can
be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params
kwarg of CVExperiment is limited to using concrete val-
ues, such as dict(max_depth=10, learning_rate=0.
1, booster="gbtree"). This is still valid for
forge_experiment(). However, forge_experiment() also al-
lows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.
001, 0.5), booster=Categorical(["gbtree", "dart"])),
or as any combination of concrete values and choices, for instance,
dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is
that ALL hyperparameters in the signature of model_initializer (and their de-
fault values) are discovered – whether or not they are explicitly given in
model_init_params. Not only does this make Experiment result descriptions
incredibly thorough, it also makes optimization smoother, more effective, and
far less work for the user. For example, take LightGBM’s LGBMRegressor,
with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRe-
gressor is actually initialized with more than a dozen other hyperparameters we
didn’t bother mentioning, and it records their values, too. So if we want to opti-
mize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows that
we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us hav-
ing to manually keep track of tons of janky collections of hyperparameters. In fact,
we really don’t need to go out of our way at all. HyperparameterHunter just acts as
our faithful lab assistant, keeping track of all the stuff we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for models’
non-initialization methods (like fit, predict, predict_proba, etc.), and for neu-
ral networks. To specify parameters for an extra method, place them
in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params,
meaning that in addition to concrete values, extra parameters can be
given as instances of Real, Integer, or Categorical. To opti-
mize over a space in which early_stopping_rounds is between 3 and 9, use

34 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,
documented under its “Attributes” section and under train_input. An example
using several DatasetSentinels can be found in HyperparameterHunter’s [XGBoost
Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined
in Environment. If list, will be used to initialize FeatureEngineer, and
can contain any of the following values:

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

3. Categorical, with categories comprising a selection of the previous two
values (optimization only)

For important information on properly formatting EngineerStep functions, please
see the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is illustrated in FeatureEngineer. If us-
ing a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices

feature_selector: List of str, callable, or list of booleans (optional) Column names
to include as input data for all provided DataFrames. If None, feature_selector
is set to all columns in train_dataset, less target_column, and
id_column. feature_selector is provided as the second argument for calls to
pandas.DataFrame.loc when constructing datasets

notes: String (optional) Additional information about the Experiment that will be
saved with the Experiment’s description result file. This serves no purpose other
than to facilitate saving Experiment details in a more readable format

do_raise_repeated: Boolean, default=False If True and this Experiment locates a
previous Experiment’s results with matching Environment and Hyperparameter
Keys, a RepeatedExperimentError will be raised. Else, a warning will be logged

See also:

hyperparameter_hunter.experiments.BaseExperiment One-off experimentation coun-
terpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed argu-
ments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place
in _execute_experiment()

Notes

The auto_start kwarg is not available here because _execute_experiment() sets it to False in
order to check for duplicated keys before running the whole Experiment. This and target_metric being
moved to __init__() are the most notable differences between calling forge_experiment() and
instantiating CVExperiment

4.3. Hyperparameter Optimization 35

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However, forge_experiment sounds
cooler and much less clunky

go(self, force_ready=True)
Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines experiment
guidelines and search dimensions. go performs a few important tasks: 1) Formally setting the hyperpa-
rameter space; 2) Locating similar experiments to be used as learning material (for OptPros that suggest
incumbent search points by estimating utilities using surrogate models); and 3) Actually setting off the
optimization process, via _optimization_loop()

Parameters

force_ready: Boolean, default=False If True, get_ready() will be invoked even
if it has already been called. This will re-initialize the hyperparameter space and
similar_experiments. Standard behavior is for go() to invoke get_ready(), so
force_ready is ignored unless get_ready() has been manually invoked

class hyperparameter_hunter.optimization.backends.skopt.protocols.ExtraTreesOptPro(target_metric=None,
it-
er-
a-
tions=1,
ver-
bose=1,
read_experiments=True,
re-
porter_parameters=None,
warn_on_re_ask=False,
base_estimator=’ET’,
n_initial_points=10,
ac-
qui-
si-
tion_function=’EI’,
ac-
qui-
si-
tion_optimizer=’sampling’,
ran-
dom_state=32,
ac-
qui-
si-
tion_function_kwargs=None,
ac-
qui-
si-
tion_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’,
call-
backs=None,
base_estimator_kwargs=None)

36 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Sequential optimization with extra trees regressor decision trees
Attributes

search_space_size The number of different hyperparameter permutations possible
given the current

source_script

Methods

forge_experiment(self, model_initializer[,
. . .])

Define hyperparameter search scaffold for building
Experiments during optimization

get_ready(self) Prepare for optimization by finalizing hyperparame-
ter space and identifying similar Experiments.

go(self[, force_ready]) Execute hyperparameter optimization, building an
Experiment for each iteration

set_dimensions(self) Locate given hyperparameters that are space choice
declarations and add them to dimensions

set_experiment_guidelines(self, *args,
. . .)

Deprecated since version 3.0.0a2.

__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True,
reporter_parameters=None, warn_on_re_ask=False, base_estimator=’ET’,
n_initial_points=10, acquisition_function=’EI’, acquisition_optimizer=’sampling’, ran-
dom_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’, callbacks=None, base_estimator_kwargs=None)

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be invoked after initializa-
tion:

1. forge_experiment()

2. go()

Parameters

target_metric: Tuple, default=(“oof”, <:attr:‘environment.Environment.metrics‘[0]>)
Rarely necessary to explicitly provide this, as the default is usually sufficient.
Path denoting the metric to be used to compare Experiment performance. The
first value should be one of [“oof”, “holdout”, “in_fold”]. The second value
should be the name of a metric being recorded according to environment.
Environment.metrics_params. See the documentation for metrics.
get_formatted_target_metric() for more info. Any values returned by,
or given as the target_metric input to, get_formatted_target_metric()
are acceptable values for BaseOptPro.target_metric

iterations: Int, default=1 Number of Experiments to conduct during optimization
upon invoking BaseOptPro.go()

verbose: {0, 1, 2}, default=1 Verbosity mode for console logging. 0: Silent. 1: Show
only logs from the Optimization Protocol. 2: In addition to logs shown when
verbose=1, also show the logs from individual Experiments

4.3. Hyperparameter Optimization 37

hyperparameter_hunter Documentation, Release 3.0.0

read_experiments: Boolean, default=True If True, all Experiment records that fit in
the current space and guidelines, and match algorithm_name, will be read in
and used to fit any optimizers

reporter_parameters: Dict, or None, default=None Additional parameters passed
to reporting.OptimizationReporter.__init__(). Note: Unless
provided explicitly, the key “do_maximize” will be added by default to re-
porter_params, with a value inferred from the direction of target_metric in
G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored, as
there are very few reasons to explicitly include it

warn_on_re_ask: Boolean, default=False If True, and the internal optimizer recom-
mends a point that has already been evaluated on invocation of ask, a warning is
logged before recommending a random point. Either way, a random point is used
instead of already-evaluated recommendations. However, logging the fact that this
has taken place can be useful to indicate that the optimizer may be stalling, espe-
cially if it repeatedly recommends the same point. In these cases, if the suggested
point is not optimal, it can be helpful to switch a different OptPro (especially Dum-
myOptPro), which will suggest points using different criteria

Other Parameters

base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns std(Y
| x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a
surrogate model corresponding to the relevant X_minimize function is created

n_initial_points: Int, default=10 Number of complete evaluation points necessary
before allowing Experiments to be approximated with base_estimator. Any valid
Experiment records found will count as initialization points. If enough Experiment
records are not found, additional points will be randomly sampled

acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
Function to minimize over the posterior distribution. Can be any of the following:

• “LCB”: Lower confidence bound

• “EI”: Negative expected improvement

• “PI”: Negative probability of improvement

• “gp_hedge”: Probabilistically choose one of the above three acquisition func-
tions at every iteration

– The gains g_i are initialized to zero

– At every iteration,

* Each acquisition function is optimised independently to propose a candi-
date point X_i

* Out of all these candidate points, the next point X_best is chosen by soft-
max(eta g_i)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that g_i -= mu(X_i)

38 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto” Method to
minimize the acquisition function. The fit model is updated with the optimal value
obtained by optimizing acq_func with acq_optimizer

• “sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.

• “lbfgs”: acq_func is optimized by

– Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs)
points

– “lbfgs” is run for 20 iterations with these initial points to find local minima

– The optimal of these local minima is used to update the prior

• “auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based
on tree-models, then this is set to “sampling”

random_state: Int, ‘RandomState‘ instance, or None, default=None Set to some-
thing other than None for reproducible results

acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
Additional arguments passed to the acquisition function

acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
Additional arguments passed to the acquisition optimizer

n_random_starts: . . . Deprecated since version 3.0.0: Use n_initial_points, instead.
Will be removed in 3.2.0

callbacks: Callable, list of callables, or None, default=[] If callable, then call-
backs(self.optimizer_result) is called after each update to optimizer. If list,
then each callable is called

base_estimator_kwargs: Dict, or None, default={} Additional arguments passed to
base_estimator when it is initialized

Notes

To provide initial input points for evaluation, individual Experiments can be executed prior to instantiating
an Optimization Protocol. The results of these Experiments will automatically be detected and cherished
by the optimizer.

SKOptPro and its children in optimization rely heavily on the utilities provided by the Scikit-
Optimize library, so thank you to the creators and contributors for their excellent work.

Methods

forge_experiment Define constraints on Experiments conducted by OptPro (like hyperparameter
search space)

go Start optimization

forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None,
feature_engineer=None, feature_selector=None, notes=None,
do_raise_repeated=True)

Define hyperparameter search scaffold for building Experiments during optimization

4.3. Hyperparameter Optimization 39

hyperparameter_hunter Documentation, Release 3.0.0

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it accepts hyperparame-
ters not only as concrete values, but also as space choices – using Real, Integer, and Categorical.
This functionality applies to the model_init_params, model_extra_params and feature_engineer kwargs.
Any Dimensions provided to forge_experiment are detected by the OptPro and used to define the hyper-
parameter search space to be optimized

Parameters

model_initializer: Class, or functools.partial, or class instance Algorithm class
used to initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s
KNeighborsClassifier; although, there are hundreds of possibilities across many
different ML libraries. model_initializer is expected to define at least fit and
predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params

model_init_params: Dict, or object (optional) Dictionary of arguments given to cre-
ate an instance of model_initializer. Any kwargs that are considered valid by the
__init__ method of model_initializer are valid in model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as
choices (dimensions to optimize) by using instances of Real, Integer, or
Categorical. Furthermore, hyperparameter choices and concrete values can
be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params
kwarg of CVExperiment is limited to using concrete val-
ues, such as dict(max_depth=10, learning_rate=0.
1, booster="gbtree"). This is still valid for
forge_experiment(). However, forge_experiment() also al-
lows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.
001, 0.5), booster=Categorical(["gbtree", "dart"])),
or as any combination of concrete values and choices, for instance,
dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is
that ALL hyperparameters in the signature of model_initializer (and their de-
fault values) are discovered – whether or not they are explicitly given in
model_init_params. Not only does this make Experiment result descriptions
incredibly thorough, it also makes optimization smoother, more effective, and
far less work for the user. For example, take LightGBM’s LGBMRegressor,
with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRe-
gressor is actually initialized with more than a dozen other hyperparameters we
didn’t bother mentioning, and it records their values, too. So if we want to opti-
mize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows that
we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us hav-
ing to manually keep track of tons of janky collections of hyperparameters. In fact,
we really don’t need to go out of our way at all. HyperparameterHunter just acts as
our faithful lab assistant, keeping track of all the stuff we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for models’

40 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

non-initialization methods (like fit, predict, predict_proba, etc.), and for neu-
ral networks. To specify parameters for an extra method, place them
in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params,
meaning that in addition to concrete values, extra parameters can be
given as instances of Real, Integer, or Categorical. To opti-
mize over a space in which early_stopping_rounds is between 3 and 9, use
model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,
documented under its “Attributes” section and under train_input. An example
using several DatasetSentinels can be found in HyperparameterHunter’s [XGBoost
Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined
in Environment. If list, will be used to initialize FeatureEngineer, and
can contain any of the following values:

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

3. Categorical, with categories comprising a selection of the previous two
values (optimization only)

For important information on properly formatting EngineerStep functions, please
see the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is illustrated in FeatureEngineer. If us-
ing a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices

feature_selector: List of str, callable, or list of booleans (optional) Column names
to include as input data for all provided DataFrames. If None, feature_selector
is set to all columns in train_dataset, less target_column, and
id_column. feature_selector is provided as the second argument for calls to
pandas.DataFrame.loc when constructing datasets

notes: String (optional) Additional information about the Experiment that will be
saved with the Experiment’s description result file. This serves no purpose other
than to facilitate saving Experiment details in a more readable format

do_raise_repeated: Boolean, default=False If True and this Experiment locates a
previous Experiment’s results with matching Environment and Hyperparameter
Keys, a RepeatedExperimentError will be raised. Else, a warning will be logged

See also:

hyperparameter_hunter.experiments.BaseExperiment One-off experimentation coun-
terpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed argu-
ments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place
in _execute_experiment()

4.3. Hyperparameter Optimization 41

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

Notes

The auto_start kwarg is not available here because _execute_experiment() sets it to False in
order to check for duplicated keys before running the whole Experiment. This and target_metric being
moved to __init__() are the most notable differences between calling forge_experiment() and
instantiating CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However, forge_experiment sounds
cooler and much less clunky

go(self, force_ready=True)
Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines experiment
guidelines and search dimensions. go performs a few important tasks: 1) Formally setting the hyperpa-
rameter space; 2) Locating similar experiments to be used as learning material (for OptPros that suggest
incumbent search points by estimating utilities using surrogate models); and 3) Actually setting off the
optimization process, via _optimization_loop()

Parameters

force_ready: Boolean, default=False If True, get_ready() will be invoked even
if it has already been called. This will re-initialize the hyperparameter space and
similar_experiments. Standard behavior is for go() to invoke get_ready(), so
force_ready is ignored unless get_ready() has been manually invoked

42 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

class hyperparameter_hunter.optimization.backends.skopt.protocols.DummyOptPro(target_metric=None,
it-
er-
a-
tions=1,
ver-
bose=1,
read_experiments=True,
re-
porter_parameters=None,
warn_on_re_ask=False,
base_estimator=’DUMMY’,
n_initial_points=10,
ac-
qui-
si-
tion_function=’EI’,
ac-
qui-
si-
tion_optimizer=’sampling’,
ran-
dom_state=32,
ac-
qui-
si-
tion_function_kwargs=None,
ac-
qui-
si-
tion_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’,
call-
backs=None,
base_estimator_kwargs=None)

Bases: hyperparameter_hunter.optimization.protocol_core.SKOptPro

Random search by uniform sampling
Attributes

search_space_size The number of different hyperparameter permutations possible
given the current

source_script

Methods

forge_experiment(self, model_initializer[,
. . .])

Define hyperparameter search scaffold for building
Experiments during optimization

get_ready(self) Prepare for optimization by finalizing hyperparame-
ter space and identifying similar Experiments.

go(self[, force_ready]) Execute hyperparameter optimization, building an
Experiment for each iteration

Continued on next page

4.3. Hyperparameter Optimization 43

hyperparameter_hunter Documentation, Release 3.0.0

Table 6 – continued from previous page
set_dimensions(self) Locate given hyperparameters that are space choice

declarations and add them to dimensions
set_experiment_guidelines(self, *args,
. . .)

Deprecated since version 3.0.0a2.

__init__(self, target_metric=None, iterations=1, verbose=1, read_experiments=True, re-
porter_parameters=None, warn_on_re_ask=False, base_estimator=’DUMMY’,
n_initial_points=10, acquisition_function=’EI’, acquisition_optimizer=’sampling’, ran-
dom_state=32, acquisition_function_kwargs=None, acquisition_optimizer_kwargs=None,
n_random_starts=’DEPRECATED’, callbacks=None, base_estimator_kwargs=None)

Base class for SKOpt-based Optimization Protocols

There are two important methods for all SKOptPro descendants that should be invoked after initializa-
tion:

1. forge_experiment()

2. go()

Parameters

target_metric: Tuple, default=(“oof”, <:attr:‘environment.Environment.metrics‘[0]>)
Rarely necessary to explicitly provide this, as the default is usually sufficient.
Path denoting the metric to be used to compare Experiment performance. The
first value should be one of [“oof”, “holdout”, “in_fold”]. The second value
should be the name of a metric being recorded according to environment.
Environment.metrics_params. See the documentation for metrics.
get_formatted_target_metric() for more info. Any values returned by,
or given as the target_metric input to, get_formatted_target_metric()
are acceptable values for BaseOptPro.target_metric

iterations: Int, default=1 Number of Experiments to conduct during optimization
upon invoking BaseOptPro.go()

verbose: {0, 1, 2}, default=1 Verbosity mode for console logging. 0: Silent. 1: Show
only logs from the Optimization Protocol. 2: In addition to logs shown when
verbose=1, also show the logs from individual Experiments

read_experiments: Boolean, default=True If True, all Experiment records that fit in
the current space and guidelines, and match algorithm_name, will be read in
and used to fit any optimizers

reporter_parameters: Dict, or None, default=None Additional parameters passed
to reporting.OptimizationReporter.__init__(). Note: Unless
provided explicitly, the key “do_maximize” will be added by default to re-
porter_params, with a value inferred from the direction of target_metric in
G.Env.metrics. In nearly all cases, the “do_maximize” key should be ignored, as
there are very few reasons to explicitly include it

warn_on_re_ask: Boolean, default=False If True, and the internal optimizer recom-
mends a point that has already been evaluated on invocation of ask, a warning is
logged before recommending a random point. Either way, a random point is used
instead of already-evaluated recommendations. However, logging the fact that this
has taken place can be useful to indicate that the optimizer may be stalling, espe-
cially if it repeatedly recommends the same point. In these cases, if the suggested
point is not optimal, it can be helpful to switch a different OptPro (especially Dum-
myOptPro), which will suggest points using different criteria

44 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Other Parameters

base_estimator: {SKLearn Regressor, “GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, default=”GP”
If not string, should inherit from sklearn.base.RegressorMixin. In addition, the
predict method should have an optional return_std argument, which returns std(Y
| x), along with E[Y | x].

If base_estimator is a string in {“GP”, “RF”, “ET”, “GBRT”, “DUMMY”}, a
surrogate model corresponding to the relevant X_minimize function is created

n_initial_points: Int, default=10 Number of complete evaluation points necessary
before allowing Experiments to be approximated with base_estimator. Any valid
Experiment records found will count as initialization points. If enough Experiment
records are not found, additional points will be randomly sampled

acquisition_function:{“LCB”, “EI”, “PI”, “gp_hedge”}, default=”gp_hedge”
Function to minimize over the posterior distribution. Can be any of the following:

• “LCB”: Lower confidence bound

• “EI”: Negative expected improvement

• “PI”: Negative probability of improvement

• “gp_hedge”: Probabilistically choose one of the above three acquisition func-
tions at every iteration

– The gains g_i are initialized to zero

– At every iteration,

* Each acquisition function is optimised independently to propose a candi-
date point X_i

* Out of all these candidate points, the next point X_best is chosen by soft-
max(eta g_i)

* After fitting the surrogate model with (X_best, y_best), the gains are up-
dated such that g_i -= mu(X_i)

acquisition_optimizer: {“sampling”, “lbfgs”, “auto”}, default=”auto” Method to
minimize the acquisition function. The fit model is updated with the optimal value
obtained by optimizing acq_func with acq_optimizer

• “sampling”: acq_func is optimized by computing acq_func at n_initial_points
randomly sampled points.

• “lbfgs”: acq_func is optimized by

– Randomly sampling n_restarts_optimizer (from acq_optimizer_kwargs)
points

– “lbfgs” is run for 20 iterations with these initial points to find local minima

– The optimal of these local minima is used to update the prior

• “auto”: acq_optimizer is configured on the basis of the base_estimator and the
search space. If the space is Categorical or if the provided estimator is based
on tree-models, then this is set to “sampling”

random_state: Int, ‘RandomState‘ instance, or None, default=None Set to some-
thing other than None for reproducible results

acquisition_function_kwargs: Dict, or None, default=dict(xi=0.01, kappa=1.96)
Additional arguments passed to the acquisition function

4.3. Hyperparameter Optimization 45

hyperparameter_hunter Documentation, Release 3.0.0

acquisition_optimizer_kwargs: Dict, or None, default=dict(n_points=10000, n_restarts_optimizer=5, n_jobs=1)
Additional arguments passed to the acquisition optimizer

n_random_starts: . . . Deprecated since version 3.0.0: Use n_initial_points, instead.
Will be removed in 3.2.0

callbacks: Callable, list of callables, or None, default=[] If callable, then call-
backs(self.optimizer_result) is called after each update to optimizer. If list,
then each callable is called

base_estimator_kwargs: Dict, or None, default={} Additional arguments passed to
base_estimator when it is initialized

Notes

To provide initial input points for evaluation, individual Experiments can be executed prior to instantiating
an Optimization Protocol. The results of these Experiments will automatically be detected and cherished
by the optimizer.

SKOptPro and its children in optimization rely heavily on the utilities provided by the Scikit-
Optimize library, so thank you to the creators and contributors for their excellent work.

Methods

forge_experiment Define constraints on Experiments conducted by OptPro (like hyperparameter
search space)

go Start optimization

forge_experiment(self, model_initializer, model_init_params=None, model_extra_params=None,
feature_engineer=None, feature_selector=None, notes=None,
do_raise_repeated=True)

Define hyperparameter search scaffold for building Experiments during optimization

OptPros use this method to guide Experiment construction behind the scenes, which is why it
looks just like hyperparameter_hunter.experiments.BaseExperiment.__init__().
forge_experiment offers one major upgrade to standard Experiment initialization: it accepts hyperparame-
ters not only as concrete values, but also as space choices – using Real, Integer, and Categorical.
This functionality applies to the model_init_params, model_extra_params and feature_engineer kwargs.
Any Dimensions provided to forge_experiment are detected by the OptPro and used to define the hyper-
parameter search space to be optimized

Parameters

model_initializer: Class, or functools.partial, or class instance Algorithm class
used to initialize a model, such as XGBoost’s XGBRegressor, or SKLearn’s
KNeighborsClassifier; although, there are hundreds of possibilities across many
different ML libraries. model_initializer is expected to define at least fit and
predict methods. model_initializer will be initialized with model_init_params,
and its extra methods (fit, predict, etc.) will be invoked with parameters in
model_extra_params

model_init_params: Dict, or object (optional) Dictionary of arguments given to cre-
ate an instance of model_initializer. Any kwargs that are considered valid by the
__init__ method of model_initializer are valid in model_init_params.

In addition to providing concrete values, hyperparameters can be expressed as
choices (dimensions to optimize) by using instances of Real, Integer, or

46 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Categorical. Furthermore, hyperparameter choices and concrete values can
be used together in model_init_params.

Using XGBoost’s XGBClassifier to illustrate, the model_init_params
kwarg of CVExperiment is limited to using concrete val-
ues, such as dict(max_depth=10, learning_rate=0.
1, booster="gbtree"). This is still valid for
forge_experiment(). However, forge_experiment() also al-
lows model_init_params to consist entirely of space choices, such as
dict(max_depth=Integer(2, 20), learning_rate=Real(0.
001, 0.5), booster=Categorical(["gbtree", "dart"])),
or as any combination of concrete values and choices, for instance,
dict(max_depth=10, learning_rate=Real(0.001, 0.5),
booster="gbtree").

One of the key features that makes HyperparameterHunter so magical is
that ALL hyperparameters in the signature of model_initializer (and their de-
fault values) are discovered – whether or not they are explicitly given in
model_init_params. Not only does this make Experiment result descriptions
incredibly thorough, it also makes optimization smoother, more effective, and
far less work for the user. For example, take LightGBM’s LGBMRegressor,
with model_init_params‘=‘dict(learning_rate=0.2). HyperparameterHunter rec-
ognizes that this differs from the default of 0.1. It also recognizes that LGBMRe-
gressor is actually initialized with more than a dozen other hyperparameters we
didn’t bother mentioning, and it records their values, too. So if we want to opti-
mize num_leaves tomorrow, the OptPro doesn’t start from scratch. It knows that
we ran an Experiment that didn’t explicitly mention num_leaves, but its default
value was 31, and it uses this information to fuel optimization – all without us hav-
ing to manually keep track of tons of janky collections of hyperparameters. In fact,
we really don’t need to go out of our way at all. HyperparameterHunter just acts as
our faithful lab assistant, keeping track of all the stuff we’d rather not worry about

model_extra_params: Dict (optional) Dictionary of extra parameters for models’
non-initialization methods (like fit, predict, predict_proba, etc.), and for neu-
ral networks. To specify parameters for an extra method, place them
in a dict named for the extra method to which the parameters should
be given. For example, to call fit with early_stopping_rounds‘=5, use
‘model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=5)).

Declaring hyperparameter space choices works identically to model_init_params,
meaning that in addition to concrete values, extra parameters can be
given as instances of Real, Integer, or Categorical. To opti-
mize over a space in which early_stopping_rounds is between 3 and 9, use
model_extra_params‘=‘dict(fit=dict(early_stopping_rounds=Real(3, 9))).

For models whose fit methods have a kwarg like eval_set (such as XGBoost’s),
one can use the DatasetSentinel attributes of the current active Environment,
documented under its “Attributes” section and under train_input. An example
using several DatasetSentinels can be found in HyperparameterHunter’s [XGBoost
Classification Example](https://github.com/HunterMcGushion/hyperparameter_
hunter/blob/master/examples/xgboost_examples/classification.py)

feature_engineer: ‘FeatureEngineer‘, or list (optional) Feature
engineering/transformation/pre-processing steps to apply to datasets defined
in Environment. If list, will be used to initialize FeatureEngineer, and
can contain any of the following values:

4.3. Hyperparameter Optimization 47

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples/classification.py

hyperparameter_hunter Documentation, Release 3.0.0

1. EngineerStep instance

2. Function input to :class:~hyperparameter_hunter.feature_engineering.EngineerStep‘

3. Categorical, with categories comprising a selection of the previous two
values (optimization only)

For important information on properly formatting EngineerStep functions, please
see the documentation of EngineerStep.

To search a space optionally including an EngineerStep, use the optional kwarg of
Categorical. This functionality is illustrated in FeatureEngineer. If us-
ing a FeatureEngineer instance to optimize feature_engineer, this instance cannot
be used with CVExperiment because Experiments can’t handle space choices

feature_selector: List of str, callable, or list of booleans (optional) Column names
to include as input data for all provided DataFrames. If None, feature_selector
is set to all columns in train_dataset, less target_column, and
id_column. feature_selector is provided as the second argument for calls to
pandas.DataFrame.loc when constructing datasets

notes: String (optional) Additional information about the Experiment that will be
saved with the Experiment’s description result file. This serves no purpose other
than to facilitate saving Experiment details in a more readable format

do_raise_repeated: Boolean, default=False If True and this Experiment locates a
previous Experiment’s results with matching Environment and Hyperparameter
Keys, a RepeatedExperimentError will be raised. Else, a warning will be logged

See also:

hyperparameter_hunter.experiments.BaseExperiment One-off experimentation coun-
terpart to an OptPro’s forge_experiment(). Internally, OptPros feed the processed argu-
ments from forge_experiment to initialize Experiments. This hand-off to Experiments takes place
in _execute_experiment()

Notes

The auto_start kwarg is not available here because _execute_experiment() sets it to False in
order to check for duplicated keys before running the whole Experiment. This and target_metric being
moved to __init__() are the most notable differences between calling forge_experiment() and
instantiating CVExperiment

A more accurate name for this method might be something like “build_experiment_forge”, since
forge_experiment itself does not actually execute any Experiments. However, forge_experiment sounds
cooler and much less clunky

go(self, force_ready=True)
Execute hyperparameter optimization, building an Experiment for each iteration

This method may only be invoked after invoking forge_experiment(), which defines experiment
guidelines and search dimensions. go performs a few important tasks: 1) Formally setting the hyperpa-
rameter space; 2) Locating similar experiments to be used as learning material (for OptPros that suggest
incumbent search points by estimating utilities using surrogate models); and 3) Actually setting off the
optimization process, via _optimization_loop()

Parameters

force_ready: Boolean, default=False If True, get_ready() will be invoked even
if it has already been called. This will re-initialize the hyperparameter space and

48 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

similar_experiments. Standard behavior is for go() to invoke get_ready(), so
force_ready is ignored unless get_ready() has been manually invoked

4.4 Hyperparameter Space

class hyperparameter_hunter.space.dimensions.Real(low, high, prior=’uniform’, trans-
form=’identity’, name=None)

Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any real value in a given range
Parameters

low: Float Lower bound (inclusive)

high: Float Upper bound (inclusive)

prior: {“uniform”, “log-uniform”}, default=”uniform” Distribution to use when sam-
pling random points for this dimension. If “uniform”, points are sampled uniformly
between the lower and upper bounds. If “log-uniform”, points are sampled uniformly
between log10(lower) and log10(upper)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(self, a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params(self) Get dict of parameters used to initialize the Real, or
their defaults

inverse_transform(self, data_t) Inverse transform samples from the warped space
back to the original space

rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, data) Transform samples from the original space into a

warped space

__init__(self, low, high, prior=’uniform’, transform=’identity’, name=None)
Search space dimension that can assume any real value in a given range

Parameters

low: Float Lower bound (inclusive)

4.4. Hyperparameter Space 49

hyperparameter_hunter Documentation, Release 3.0.0

high: Float Upper bound (inclusive)

prior: {“uniform”, “log-uniform”}, default=”uniform” Distribution to use when
sampling random points for this dimension. If “uniform”, points are sampled uni-
formly between the lower and upper bounds. If “log-uniform”, points are sampled
uniformly between log10(lower) and log10(upper)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply
to the original space. If “identity”, the transformed space is the same as the original
space. If “normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

class hyperparameter_hunter.space.dimensions.Integer(low, high, transform=’identity’,
name=None)

Bases: hyperparameter_hunter.space.dimensions.NumericalDimension

Search space dimension that can assume any integer value in a given range
Parameters

low: Int Lower bound (inclusive)

high: Int Upper bound (inclusive)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply to the
original space. If “identity”, the transformed space is the same as the original space. If
“normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(self, a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params(self) Get dict of parameters used to initialize the Integer,
or their defaults

Continued on next page

50 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Table 8 – continued from previous page
inverse_transform(self, data_t) Inverse transform samples from the warped space

back to the original space
rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, data) Transform samples from the original space into a

warped space

__init__(self, low, high, transform=’identity’, name=None)
Search space dimension that can assume any integer value in a given range

Parameters

low: Int Lower bound (inclusive)

high: Int Upper bound (inclusive)

transform: {“identity”, “normalize”}, default=”identity” Transformation to apply
to the original space. If “identity”, the transformed space is the same as the original
space. If “normalize”, the transformed space is scaled between 0 and 1

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

distribution: rv_generic See documentation of _make_distribution() or
distribution()

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

class hyperparameter_hunter.space.dimensions.Categorical(categories: list,
prior: list = None,
transform=’onehot’,
optional=False,
name=None)

Bases: hyperparameter_hunter.space.dimensions.Dimension

Search space dimension that can assume any categorical value in a given list
Parameters

categories: List Sequence of possible categories of shape (n_categories,)

prior: List, or None, default=None If list, prior probabilities for each category of shape
(categories,). By default all categories are equally likely

transform: {“onehot”, “identity”}, default=”onehot” Transformation to apply to the orig-
inal space. If “identity”, the transformed space is the same as the original space. If
“onehot”, the transformed space is a one-hot encoded representation of the original
space

optional: Boolean, default=False Intended for use by FeatureEngineer when opti-
mizing an EngineerStep. Specifically, this enables searching through a space in
which an EngineerStep either may or may not be used. This is contrary to Categori-
cal’s usual function of creating a space comprising multiple categories. When optional
= True, the space created will represent any of the values in categories either being
included in the entire FeatureEngineer process, or being skipped entirely. Internally,
a value excluded by optional is represented by a sentinel value that signals it should

4.4. Hyperparameter Space 51

hyperparameter_hunter Documentation, Release 3.0.0

be removed from the containing list, so optional will not work for choosing between a
single value and None, for example

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

categories: Tuple Original value passed through the categories kwarg, cast to a tuple. If
optional is True, then an instance of RejectedOptional will be appended to cate-
gories

distribution: rv_generic See documentation of _make_distribution() or
distribution()

optional: Boolean Original value passed through the optional kwarg

prior: List, or None Original value passed through the prior kwarg

prior_actual: List Calculated prior value, initially equivalent to prior, but then set to a
default array if None

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

Methods

distance(self, a, b) Calculate distance between two points in the dimen-
sion’s bounds

get_params(self) Get dict of parameters used to initialize the Categor-
ical, or their defaults

inverse_transform(self, data_t) Inverse transform samples from the warped space
back to the original space

rvs(self[, n_samples, random_state]) Draw random samples.
transform(self, data) Transform samples from the original space into a

warped space

__init__(self, categories:list, prior:list=None, transform=’onehot’, optional=False, name=None)
Search space dimension that can assume any categorical value in a given list

Parameters

categories: List Sequence of possible categories of shape (n_categories,)

prior: List, or None, default=None If list, prior probabilities for each category of
shape (categories,). By default all categories are equally likely

transform: {“onehot”, “identity”}, default=”onehot” Transformation to apply to
the original space. If “identity”, the transformed space is the same as the origi-
nal space. If “onehot”, the transformed space is a one-hot encoded representation
of the original space

optional: Boolean, default=False Intended for use by FeatureEngineer when
optimizing an EngineerStep. Specifically, this enables searching through a
space in which an EngineerStep either may or may not be used. This is con-
trary to Categorical’s usual function of creating a space comprising multiple cat-
egories. When optional = True, the space created will represent any of the values

52 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

in categories either being included in the entire FeatureEngineer process, or being
skipped entirely. Internally, a value excluded by optional is represented by a sen-
tinel value that signals it should be removed from the containing list, so optional
will not work for choosing between a single value and None, for example

name: String, tuple, or None, default=None A name associated with the dimension

Attributes

categories: Tuple Original value passed through the categories kwarg, cast to a tuple.
If optional is True, then an instance of RejectedOptional will be appended
to categories

distribution: rv_generic See documentation of _make_distribution() or
distribution()

optional: Boolean Original value passed through the optional kwarg

prior: List, or None Original value passed through the prior kwarg

prior_actual: List Calculated prior value, initially equivalent to prior, but then set
to a default array if None

transform_: String Original value passed through the transform kwarg - Because
transform() exists

transformer: Transformer See documentation of _make_transformer() or
transformer()

4.5 Feature Engineering

class hyperparameter_hunter.feature_engineering.FeatureEngineer(steps=None,
do_validate=False,
**datasets)

Bases: object

Class to organize feature engineering step callables steps (EngineerStep instances) and the datasets that the
steps request and return.

Parameters

steps: List, or None, default=None List of arbitrary length, containing any of the following
values:

1. EngineerStep instance,

2. Function to provide as input to EngineerStep, or

3. Categorical, with categories comprising a selection of the previous two steps
values (optimization only)

The third value can only be used during optimization. The feature_engineer provided
to CVExperiment, for example, may only contain the first two values. To search a
space optionally including an EngineerStep, use the optional kwarg of Categorical.

See EngineerStep for information on properly formatted EngineerStep functions.
Additional engineering steps may be added via add_step()

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies

4.5. Feature Engineering 53

hyperparameter_hunter Documentation, Release 3.0.0

are found, rather than logging a message. If do_validate = False, no validation will be
performed

**datasets: DFDict This is not expected to be provided on initialization and is offered pri-
marily for debugging/testing. Mapping of datasets necessary to perform feature engi-
neering steps

See also:

EngineerStep For proper formatting of non-Categorical values of steps

Notes

If steps does include any instances of hyperparameter_hunter.space.dimensions.
Categorical, this FeatureEngineer instance will not be usable by Experiments. It can only be used
by Optimization Protocols. Furthermore, the FeatureEngineer that the Optimization Protocol actually ends up
using will not pass identity checks against the original FeatureEngineer that contained Categorical steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler,
→˓QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
... s = MinMaxScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_targets.
→˓values)
... return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs

FeatureEngineer steps wrapped by ‘EngineerStep‘ == raw function steps - as long as the ‘EngineerStep‘ is
using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> # ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])

(continues on next page)

54 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])

‘Categorical‘ can be used during optimization and placed anywhere in ‘steps‘. ‘Categorical‘ can also han-
dle either ‘EngineerStep‘ categories or raw functions. Use the ‘optional‘ kwarg of ‘Categorical‘ to test some
questionable steps

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_
→˓transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale, q_
→˓transform])
>>> fe_5 = FeatureEngineer([
... Categorical([sqr_sum], optional=True),
... Categorical([EngineerStep(s_scale), mm_scale]),
... q_transform
...])

__init__(self, steps=None, do_validate=False, **datasets:Dict[str, pandas.core.frame.DataFrame])
Class to organize feature engineering step callables steps (EngineerStep instances) and the datasets
that the steps request and return.

Parameters

steps: List, or None, default=None List of arbitrary length, containing any of the fol-
lowing values:

1. EngineerStep instance,

2. Function to provide as input to EngineerStep, or

3. Categorical, with categories comprising a selection of the previous two
steps values (optimization only)

The third value can only be used during optimization. The feature_engineer pro-
vided to CVExperiment, for example, may only contain the first two values. To
search a space optionally including an EngineerStep, use the optional kwarg of
Categorical.

See EngineerStep for information on properly formatted EngineerStep func-
tions. Additional engineering steps may be added via add_step()

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to
validate the datasets resulting from feature engineering steps. If True, hashes of
the new datasets will be compared to those of the originals to ensure they were ac-
tually modified. Results will be logged. If do_validate = “strict”, an exception will
be raised if any anomalies are found, rather than logging a message. If do_validate
= False, no validation will be performed

**datasets: DFDict This is not expected to be provided on initialization and is offered
primarily for debugging/testing. Mapping of datasets necessary to perform feature
engineering steps

See also:

EngineerStep For proper formatting of non-Categorical values of steps

4.5. Feature Engineering 55

hyperparameter_hunter Documentation, Release 3.0.0

Notes

If steps does include any instances of hyperparameter_hunter.space.dimensions.
Categorical, this FeatureEngineer instance will not be usable by Experiments. It can only be used by
Optimization Protocols. Furthermore, the FeatureEngineer that the Optimization Protocol actually ends
up using will not pass identity checks against the original FeatureEngineer that contained Categorical
steps

Examples

>>> from sklearn.preprocessing import StandardScaler, MinMaxScaler,
→˓QuantileTransformer
>>> # Define some engineer step functions to play with
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_
→˓inputs.values)
... return train_inputs, non_train_inputs
>>> def mm_scale(train_inputs, non_train_inputs):
... s = MinMaxScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_
→˓inputs.values)
... return train_inputs, non_train_inputs
>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_
→˓targets.values)
... return train_targets, non_train_targets, t
>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs

FeatureEngineer steps wrapped by ‘EngineerStep‘ == raw function steps - as long as the ‘EngineerStep‘
is using the default parameters

>>> # FeatureEngineer steps wrapped by `EngineerStep` == raw function steps
>>> # ... As long as the `EngineerStep` is using the default parameters
>>> fe_0 = FeatureEngineer([sqr_sum, s_scale])
>>> fe_1 = FeatureEngineer([EngineerStep(sqr_sum), EngineerStep(s_scale)])
>>> fe_0.steps == fe_1.steps
True
>>> fe_2 = FeatureEngineer([sqr_sum, EngineerStep(s_scale), q_transform])

‘Categorical‘ can be used during optimization and placed anywhere in ‘steps‘. ‘Categorical‘ can also
handle either ‘EngineerStep‘ categories or raw functions. Use the ‘optional‘ kwarg of ‘Categorical‘ to
test some questionable steps

56 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

>>> fe_3 = FeatureEngineer([sqr_sum, Categorical([s_scale, mm_scale]), q_
→˓transform])
>>> fe_4 = FeatureEngineer([Categorical([sqr_sum], optional=True), s_scale,
→˓q_transform])
>>> fe_5 = FeatureEngineer([
... Categorical([sqr_sum], optional=True),
... Categorical([EngineerStep(s_scale), mm_scale]),
... q_transform
...])

class hyperparameter_hunter.feature_engineering.EngineerStep(f: Callable,
stage=None,
name=None,
params=None,
do_validate=False)

Bases: object

Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization than a raw engineer
step function

Parameters

f: Callable Feature engineering step function that requests, modifies, and returns datasets
params

Step functions should follow these guidelines:

1. Request as input a subset of the 11 data strings listed in params

2. Do whatever you want to the DataFrames given as input

3. Return new DataFrame values of the input parameters in same order as requested

If performing a task like target transformation, causing predictions to be transformed, it
is often desirable to inverse-transform the predictions to be of the expected form. This
can easily be done by returning an extra value from f (after the datasets) that is either a
callable, or a transformer class that was fitted during the execution of f and implements
an inverse_transform method. This is the only instance in which it is acceptable for
f to return values that don’t mimic its input parameters. See the engineer function
definition using SKLearn’s QuantileTransformer in the Examples section below for an
actual inverse-transformation-compatible implementation

stage: String in {“pre_cv”, “intra_cv”}, or None, default=None Feature engineering
stage during which the callable f will be given the datasets params to modify and
return. If None, will be inferred based on params.

• “pre_cv” functions are applied only once in the experiment: when it starts

• “intra_cv” functions are reapplied for each fold in the cross-validation splits

If stage is left to be inferred, “pre_cv” will usually be selected. However, if any params
(or parameters in the signature of f) are prefixed with “validation. . . ” or “non_train. . . ”,
then stage will inferred as “intra_cv”. See the Notes section below for suggestions on
the stage to use for different functions

name: String, or None, default=None Identifier for the transformation applied by this en-
gineering step. If None, f.__name__ will be used

4.5. Feature Engineering 57

hyperparameter_hunter Documentation, Release 3.0.0

params: Tuple[str], or None, default=None Dataset names requested by feature engineer-
ing step callable f. If None, will be inferred by parsing the signature of f. Must be a
subset of the following 11 strings:

Input Data

1. “train_inputs”

2. “validation_inputs”

3. “holdout_inputs”

4. “test_inputs”

5. “all_inputs” ("train_inputs" + ["validation_inputs"] +
"holdout_inputs" + "test_inputs")

6. “non_train_inputs” (["validation_inputs"] +
"holdout_inputs" + "test_inputs")

Target Data

7. “train_targets”

8. “validation_targets”

9. “holdout_targets”

10. “all_targets” ("train_targets" + ["validation_targets"] +
"holdout_targets")

11. “non_train_targets” (["validation_targets"] +
"holdout_targets")

As an alternative to the above list, just remember that the first half of all parameter
names should be one of {“train”, “validation”, “holdout”, “test”, “all”, “non_train”},
and the second half should be either “inputs” or “targets”. The only exception to this
rule is “test_targets”, which doesn’t exist.

Inference of “validation” params is affected by stage. During the “pre_cv” stage, the
validation dataset has not yet been created and is still a part of the train dataset. During
the “intra_cv” stage, the validation dataset is created by removing a portion of the train
dataset, and their values passed to f reflect this fact. This also means that the values of
the merged (“all”/”non_train”-prefixed) datasets may or may not contain “validation”
data depending on the stage; however, this is all handled internally, so you probably
don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to validate
the datasets resulting from feature engineering steps. If True, hashes of the new datasets
will be compared to those of the originals to ensure they were actually modified. Results
will be logged. If do_validate = “strict”, an exception will be raised if any anomalies
are found, rather than logging a message. If do_validate = False, no validation will be
performed

See also:

FeatureEngineer The container for EngineerStep instances - EngineerStep‘s should always be provided
to HyperparameterHunter through a ‘FeatureEngineer

58 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

Categorical Can be used during optimization to search through a group of EngineerStep‘s given as ‘cat-
egories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one of the
EngineerStep‘s in ‘categories, or may be omitted entirely

get_engineering_step_stage() More information on stage inference and situations where overriding
it may be prudent

Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each sample/row as inde-
pendent entities. For example, steps like converting a string day of the week to one-hot encoded columns, or
imputing missing values by replacement with -1 might be conducted “pre_cv”, since they are unlikely to intro-
duce an information leakage. Conversely, steps like scaling/normalization, whose results for the data in one row
are affected by the data in other rows should be performed “intra_cv” in order to recalculate the final values of
the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the “. . . _targets” counterpart
accompanying the other datasets. The “targets” suffix is missing because test data targets are never given. Note
that although “test_inputs” is still included in both “all_inputs” and “non_train_inputs”, its lack of a target
column means that “all_targets” and “non_train_targets” may have different lengths than their “inputs”-suffixed
counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_inputs.
→˓values)
... return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a crazy
→˓person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'

Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):

File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs` by
→˓way of:

- ('all_inputs', 'train_inputs')
- ('train_inputs',)

Each dataset may only be requested by a single param for each function

4.5. Feature Engineering 59

hyperparameter_hunter Documentation, Release 3.0.0

Error is the same if ‘(train_inputs, all_inputs)‘ is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)

Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_targets.
→˓values)
... return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be returned in
→˓order,
>>> # but they are followed by `t`, an instance of `QuantileTransformer` we
→˓just fitted,
>>> # whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data requested
→˓as input

__init__(self, f:Callable, stage=None, name=None, params=None, do_validate=False)
Container for individual FeatureEngineer step functions

Compartmentalizes functions of singular engineer steps and allows for greater customization than a raw
engineer step function

Parameters

f: Callable Feature engineering step function that requests, modifies, and returns
datasets params

Step functions should follow these guidelines:

1. Request as input a subset of the 11 data strings listed in params

2. Do whatever you want to the DataFrames given as input

3. Return new DataFrame values of the input parameters in same order as re-
quested

60 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

If performing a task like target transformation, causing predictions to be trans-
formed, it is often desirable to inverse-transform the predictions to be of the ex-
pected form. This can easily be done by returning an extra value from f (after the
datasets) that is either a callable, or a transformer class that was fitted during the ex-
ecution of f and implements an inverse_transform method. This is the only instance
in which it is acceptable for f to return values that don’t mimic its input parame-
ters. See the engineer function definition using SKLearn’s QuantileTransformer in
the Examples section below for an actual inverse-transformation-compatible im-
plementation

stage: String in {“pre_cv”, “intra_cv”}, or None, default=None Feature engineer-
ing stage during which the callable f will be given the datasets params to modify
and return. If None, will be inferred based on params.

• “pre_cv” functions are applied only once in the experiment: when it starts

• “intra_cv” functions are reapplied for each fold in the cross-validation splits

If stage is left to be inferred, “pre_cv” will usually be selected. However, if any
params (or parameters in the signature of f) are prefixed with “validation. . . ” or
“non_train. . . ”, then stage will inferred as “intra_cv”. See the Notes section below
for suggestions on the stage to use for different functions

name: String, or None, default=None Identifier for the transformation applied by
this engineering step. If None, f.__name__ will be used

params: Tuple[str], or None, default=None Dataset names requested by feature en-
gineering step callable f. If None, will be inferred by parsing the signature of f.
Must be a subset of the following 11 strings:

Input Data

1. “train_inputs”

2. “validation_inputs”

3. “holdout_inputs”

4. “test_inputs”

5. “all_inputs” ("train_inputs" + ["validation_inputs"] +
"holdout_inputs" + "test_inputs")

6. “non_train_inputs” (["validation_inputs"] +
"holdout_inputs" + "test_inputs")

Target Data

7. “train_targets”

8. “validation_targets”

9. “holdout_targets”

10. “all_targets” ("train_targets" + ["validation_targets"] +
"holdout_targets")

11. “non_train_targets” (["validation_targets"] +
"holdout_targets")

As an alternative to the above list, just remember that the first half of all pa-
rameter names should be one of {“train”, “validation”, “holdout”, “test”, “all”,
“non_train”}, and the second half should be either “inputs” or “targets”. The only
exception to this rule is “test_targets”, which doesn’t exist.

4.5. Feature Engineering 61

hyperparameter_hunter Documentation, Release 3.0.0

Inference of “validation” params is affected by stage. During the “pre_cv” stage,
the validation dataset has not yet been created and is still a part of the train dataset.
During the “intra_cv” stage, the validation dataset is created by removing a portion
of the train dataset, and their values passed to f reflect this fact. This also means
that the values of the merged (“all”/”non_train”-prefixed) datasets may or may not
contain “validation” data depending on the stage; however, this is all handled in-
ternally, so you probably don’t need to worry about it.

params may not include multiple references to the same dataset, either directly or
indirectly. This means (“train_inputs”, “train_inputs”) is invalid due to duplicate
direct references. Less obviously, (“train_inputs”, “all_inputs”) is invalid because
“all_inputs” includes “train_inputs”

do_validate: Boolean, or “strict”, default=False . . . Experimental. . . Whether to
validate the datasets resulting from feature engineering steps. If True, hashes of
the new datasets will be compared to those of the originals to ensure they were ac-
tually modified. Results will be logged. If do_validate = “strict”, an exception will
be raised if any anomalies are found, rather than logging a message. If do_validate
= False, no validation will be performed

See also:

FeatureEngineer The container for EngineerStep instances - EngineerStep‘s should always be pro-
vided to HyperparameterHunter through a ‘FeatureEngineer

Categorical Can be used during optimization to search through a group of EngineerStep‘s given as
‘categories. The optional kwarg of Categorical designates a FeatureEngineer step that may be one
of the EngineerStep‘s in ‘categories, or may be omitted entirely

get_engineering_step_stage() More information on stage inference and situations where
overriding it may be prudent

Notes

stage: Generally, feature engineering conducted in the “pre_cv” stage should regard each sample/row as
independent entities. For example, steps like converting a string day of the week to one-hot encoded
columns, or imputing missing values by replacement with -1 might be conducted “pre_cv”, since they are
unlikely to introduce an information leakage. Conversely, steps like scaling/normalization, whose results
for the data in one row are affected by the data in other rows should be performed “intra_cv” in order to
recalculate the final values of the datasets for each cross validation split and avoid information leakage.

params: In the list of the 11 valid params strings, “test_inputs” is notably missing the “. . . _targets”
counterpart accompanying the other datasets. The “targets” suffix is missing because test data targets are
never given. Note that although “test_inputs” is still included in both “all_inputs” and “non_train_inputs”,
its lack of a target column means that “all_targets” and “non_train_targets” may have different lengths
than their “inputs”-suffixed counterparts

Examples

>>> from sklearn.preprocessing import StandardScaler, QuantileTransformer
>>> def s_scale(train_inputs, non_train_inputs):
... s = StandardScaler()
... train_inputs[train_inputs.columns] = s.fit_transform(train_inputs.
→˓values)
... non_train_inputs[train_inputs.columns] = s.transform(non_train_
→˓inputs.values) (continues on next page)

62 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

... return train_inputs, non_train_inputs
>>> # Sensible parameter defaults inferred based on `f`
>>> es_0 = EngineerStep(s_scale)
>>> es_0.stage
'intra_cv'
>>> es_0.name
's_scale'
>>> es_0.params
('train_inputs', 'non_train_inputs')
>>> # Override `stage` if you want to fit your scaler on OOF data like a
→˓crazy person
>>> es_1 = EngineerStep(s_scale, stage="pre_cv")
>>> es_1.stage
'pre_cv'

Watch out for multiple requests to the same data

>>> es_2 = EngineerStep(s_scale, params=("train_inputs", "all_inputs"))
Traceback (most recent call last):

File "feature_engineering.py", line ? in validate_dataset_names
ValueError: Requested params include duplicate references to `train_inputs`
→˓by way of:

- ('all_inputs', 'train_inputs')
- ('train_inputs',)

Each dataset may only be requested by a single param for each function

Error is the same if ‘(train_inputs, all_inputs)‘ is in the actual function signature

EngineerStep functions aren’t just limited to transformations. Make your own features!

>>> def sqr_sum(all_inputs):
... all_inputs["square_sum"] = all_inputs.agg(
... lambda row: np.sqrt(np.sum([np.square(_) for _ in row])), axis=
→˓"columns"
...)
... return all_inputs
>>> es_3 = EngineerStep(sqr_sum)
>>> es_3.stage
'pre_cv'
>>> es_3.name
'sqr_sum'
>>> es_3.params
('all_inputs',)

Inverse-transformation Implementation:

>>> def q_transform(train_targets, non_train_targets):
... t = QuantileTransformer(output_distribution="normal")
... train_targets[train_targets.columns] = t.fit_transform(train_targets.
→˓values)
... non_train_targets[train_targets.columns] = t.transform(non_train_
→˓targets.values)
... return train_targets, non_train_targets, t
>>> # Note that `train_targets` and `non_train_targets` must still be
→˓returned in order,
>>> # but they are followed by `t`, an instance of `QuantileTransformer`
→˓we just fitted,

(continues on next page)

4.5. Feature Engineering 63

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

>>> # whose `inverse_transform` method will be called on predictions
>>> es_4 = EngineerStep(q_transform)
>>> es_4.stage
'intra_cv'
>>> es_4.name
'q_transform'
>>> es_4.params
('train_targets', 'non_train_targets')
>>> # `params` does not include any returned transformers - Only data
→˓requested as input

4.6 Extras

hyperparameter_hunter.callbacks.bases.lambda_callback(on_exp_start=None,
on_exp_end=None,
on_rep_start=None,
on_rep_end=None,
on_fold_start=None,
on_fold_end=None,
on_run_start=None,
on_run_end=None,
agg_name=None,
do_reshape_aggs=True,
method_agg_keys=False,
on_experiment_start=<object
object at 0x7fb828ce0be0>,
on_experiment_end=<object
object at 0x7fb828ce0be0>,
on_repetition_start=<object
object at 0x7fb828ce0be0>,
on_repetition_end=<object
object at 0x7fb828ce0be0>)

Utility for creating custom callbacks to be declared by Environment and used by Experiments. The callable
“on_<. . . >_<start/end>” parameters provided will receive as input whichever attributes of the Experiment are
included in the signature of the given callable. If **kwargs is given in the callable’s signature, a dict of all of
the Experiment’s attributes will be provided. This can be helpful for trying to figure out how to build a custom
callback, but should not be used unless absolutely necessary. If the Experiment does not have an attribute
specified in the callable’s signature, the following placeholder will be given: “INVALID KWARG”

Parameters

on_exp_start: Callable, or None, default=None Callable that receives Experiment’s val-
ues for parameters in the signature at Experiment start

on_exp_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at Experiment end

on_rep_start: Callable, or None, default=None Callable that receives Experiment’s val-
ues for parameters in the signature at repetition start

on_rep_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at repetition end

on_fold_start: Callable, or None, default=None Callable that receives Experiment’s val-
ues for parameters in the signature at fold start

64 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

on_fold_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at fold end

on_run_start: Callable, or None, default=None Callable that receives Experiment’s val-
ues for parameters in the signature at run start

on_run_end: Callable, or None, default=None Callable that receives Experiment’s values
for parameters in the signature at run end

agg_name: Str, default=uuid.uuid4 This parameter is only used if the callables are be-
having like AggregatorCallbacks by returning values (see the “Notes” section be-
low for details on this). If the callables do return values, they will be stored un-
der a key named (“_” + agg_name) in a dict in hyperparameter_hunter.
experiments.BaseExperiment.stat_aggregates. The purpose of this
parameter is to make it easier to understand an Experiment’s description file, as
agg_name will default to a UUID if it is not given

do_reshape_aggs: Boolean, default=True Whether to reshape the aggregated values to re-
flect the nested repetitions/folds/runs structure used for other aggregated values. If
False, lists of aggregated values are left in their original shapes. This parameter is only
used if the callables are behaving like AggregatorCallbacks (see the “Notes” section
below and agg_name for details on this)

method_agg_keys: Boolean, default=False If True, the aggregate keys for the items added
to the dict at agg_name are equivalent to the names of the “on_<. . . >_<start/end>”
pseudo-methods whose values are being aggregated. In other words, the pool of all
possible aggregate keys goes from [“runs”, “folds”, “reps”, “final”] to the names of the
eight “on_<. . . >_<start/end>” kwargs of lambda_callback(). See the “Notes”
section below for further details and a rough outline

on_experiment_start: . . . Deprecated since version 3.0.0: Renamed to on_exp_start. Will
be removed in 3.2.0

on_experiment_end: . . . Deprecated since version 3.0.0: Renamed to on_exp_end. Will be
removed in 3.2.0

on_repetition_start: . . . Deprecated since version 3.0.0: Renamed to on_rep_start. Will be
removed in 3.2.0

on_repetition_end: . . . Deprecated since version 3.0.0: Renamed to on_rep_end. Will be
removed in 3.2.0

Returns

LambdaCallback: LambdaCallback Uninitialized class, whose methods are the
callables of the corresponding “on. . . ” kwarg

Notes

For all of the “on_<. . . >_<start/end>” callables provided as input to lambda_callback, consider the following
guidelines (for example function “f”, which can represent any of the callables):

• All input parameters in the signature of “f” are attributes of the Experiment being executed

– If “**kwargs” is a parameter, a dict of all the Experiment’s attributes will be provided
• “f” will be treated as a method of a parent class of the Experiment

– Take care when modifying attributes, as changes are reflected in the Experiment itself
• If “f” returns something, it will automatically behave like an AggregatorCallback (see
hyperparameter_hunter.callbacks.aggregators). Specifically, the following will
occur:

4.6. Extras 65

hyperparameter_hunter Documentation, Release 3.0.0

– A new key (named by agg_name if given, else a UUID) with a dict value is added to
hyperparameter_hunter.experiments.BaseExperiment.stat_aggregates

* This new dict can have up to four keys: “runs” (list), “folds” (list), “reps” (list), and “final”
(object)

– If “f” is an “on_run. . . ” function, the returned value is appended to the “runs” list in the new dict

– Similarly, if “f” is an “on_fold. . . ” or “on_rep. . . ” function, the returned value is appended to the
“folds”, or “reps” list, respectively

– If “f” is an “on_exp. . . ” function, the “final” key in the new dict is set to the returned value

– If values were aggregated in the aforementioned manner, the lists of collected values will be re-
shaped according to runs/folds/reps on Experiment end

– The aggregated values will be saved in the Experiment’s description file

* This is because hyperparameter_hunter.experiments.BaseExperiment.
stat_aggregates is saved in its entirety

What follows is a rough outline of the structure produced when using an aggregator-like callback that auto-
matically populates experiments.BaseExperiment.stat_aggregates with results of the functions
used as arguments to lambda_callback():

BaseExperiment.stat_aggregates = dict(
...,
<`agg_name`>=dict(

<agg_key "runs"> = [...],
<agg_key "folds"> = [...],
<agg_key "reps"> = [...],
<agg_key "final"> = object(),
...

),
...

)

In the above outline, the actual agg_key‘s included in the dict at ‘agg_name depend on which
“on_<. . . >_<start/end>” callables are behaving like aggregators. For example, if neither on_run_start nor
on_run_end explicitly returns something, then the “runs” agg_key is not included in the agg_name dict. Simi-
larly, if, for example, neither on_exp_start nor on_exp_end is provided, then the “final” agg_key is not included.
If method_agg_keys=True, then the agg keys used in the dict are modified to be named after the method called.
For example, if method_agg_keys=True and on_fold_start and on_fold_end are both callables returning values
to be aggregated, then the agg_key‘s used for each will be “on_fold_start” and “on_fold_end”, respectively. In
this example, if ‘method_agg_keys=False (default) and do_reshape_aggs=False, then the single “folds” agg_key
would contain the combined contents returned by both methods in the order in which they were returned

For examples using lambda_callback to create custom callbacks, see hyperparameter_hunter.
callbacks.recipes

Examples

>>> from hyperparameter_hunter.environment import Environment
>>> def printer_helper(_rep, _fold, _run, last_evaluation_results):
... print(f"{_rep}.{_fold}.{_run} {last_evaluation_results}")
>>> my_lambda_callback = lambda_callback(
... on_exp_end=printer_helper,
... on_rep_end=printer_helper,
... on_fold_end=printer_helper,

(continues on next page)

66 Chapter 4. HyperparameterHunter API Essentials

hyperparameter_hunter Documentation, Release 3.0.0

(continued from previous page)

... on_run_end=printer_helper,

...)

... # env = Environment(

... # train_dataset="i am a dataset",

... # results_path="path/to/HyperparameterHunterAssets",

... # metrics=["roc_auc_score"],

... # experiment_callbacks=[my_lambda_callback]

... #)

... # ... Now execute an Experiment, or an Optimization Protocol...

See hyperparameter_hunter.examples.lambda_callback_example for more information

4.7 Indices and tables

• genindex

• modindex

• search

4.7. Indices and tables 67

hyperparameter_hunter Documentation, Release 3.0.0

68 Chapter 4. HyperparameterHunter API Essentials

CHAPTER

FIVE

COMPLETE HYPERPARAMETERHUNTER API

This section exposes the complete HyperparameterHunter API.

• genindex

• modindex

• search

69

hyperparameter_hunter Documentation, Release 3.0.0

70 Chapter 5. Complete HyperparameterHunter API

CHAPTER

SIX

FILE STRUCTURE OVERVIEW

This section is an overview of the result file structure created and updated when Experiments are completed.

6.1 HyperparameterHunterAssets/

• Contains one file (‘Heartbeat.log’), and four subdirectories (‘Experiments/’, ‘KeyAttributeLookup/’,
‘Leaderboards/’, and ‘TestedKeys/’).

• ‘Heartbeat.log’ is the log file for the current/most recently executed Experiment. It will look very much
like the printed output of CVExperiment, with some additional debug messages thrown in. When the
Experiment is completed, a copy of this file is saved as the Experiment’s own Heartbeat file, which
will be discussed below.

6.1.1 /Experiments/

Contains up to six different subdirectories. The files contained in each of the subdirectories all follow the same naming
convention: they are named after the Experiment’s randomly-generated UUID. The subdirectories are as follows:

1) /Descriptions/

Contains a .json file for each completed Experiment, describing all critical (and some extra) information about the
Experiment’s results. Such information includes, but is certainly not limited to: keys, algorithm/library name, final
scores, model_initializer hash, hyperparameters, cross experiment parameters, breakdown of times elapsed, start/end
datetimes, breakdown of evaluations over runs/folds/reps, source script name, platform, and additional notes. This file
is meant to give you all the details you need regarding an Experiment’s results and the conditions that led to those
results.

2) /Heartbeats/

Contains a .log file for each completed Experiment that is created by copying the aforementioned ‘Hyperparam-
eterHunterAssets/Heartbeat.log’ file. This file is meant to give you a record of what exactly the Experiment was
experiencing along the course of its existence. This can be useful if you need to verify questionable results, or check
for error/warning/debug messages that might not have been noticed before.

71

hyperparameter_hunter Documentation, Release 3.0.0

3) /PredictionsOOF/

Contains a .csv file for each completed Experiment, containing out-of-fold predictions for the train_dataset
provided to Environment. If Environment is given a runs value > 1, or if a repeated cross-validation scheme
is provided (like sklearn’s RepeatedKFold or RepeatedStratifiedKFold), then OOF predictions will be
averaged according to the number of runs and repetitions. An extended discussion of this file’s uses probably isn’t
necessary, but just some of the things you might want it for include: testing the performance of ensembled models via
their prediction files, or calculating other metric values, if, for example, we wanted an F1 score, or simple accuracy
after the Experiment had finished, instead of the ROC-AUC score we told the Environment we wanted. Note
that if we knew ahead of time we wanted all three of these metrics, we could have easily given the Environment all
three (or any other number of metrics) at its initialization. See the ‘custom_metrics_example.py’ example script for
more details on advanced metrics specifications.

4) /PredictionsHoldout/

This subdirectory’s file structure is pretty much identical to ‘PredictionsOOF/’ and is populated when we use
Environment’s holdout_dataset kwarg to provide a holdout DataFrame, a filepath to one, or a callable to
extract a holdout_dataset from our train_dataset. Additionally, if a holdout_dataset is provided,
the provided metrics will be calculated for it as well (unless you tell it otherwise).

5) /PredictionsTest/

This subdirectory is much like ‘PredictionsOOF/’ and ‘PredictionsHoldout/’. It is populated when we use
Environment’s test_dataset kwarg to provide a test DataFrame, or a filepath to one. It may be
worth noting that the major difference between test_dataset and its counterparts (train_dataset, and
holdout_dataset) is that test predictions are not evaluated because it is the nature of the test_dataset to
have unknown targets.

6) /ScriptBackups/

Contains a .py file for each completed Experiment that is an exact copy of the script executed that led to the
instantiation of the Experiment. These files exist primarily to assist in “oh shit” moments where you have no
idea how to recreate an Experiment. ‘script_backup’ is blacklisted by default when executing a hyperparameter
OptimizationProtocol, as all experiments would be created by the same file.

6.1.2 /KeyAttributeLookup/

• This directory stores any complex-typed Environment parameters and hyperparameters, as well as the hashes
with which those complex objects are associated.

• Specifically, this directory is concerned with any python classes, or callables, or DataFrames you may provide,
and will create a the appropriate file or directory to properly store the object.

– If a class is provided (as is the case with cv_type, and model_initializer), the Shelve and Dill
libraries are used to pickle a copy of the class, linked to the class’s hash as its key.

– If a defined function, or a lambda is provided (as is the case with prediction_formatter, which is
an optional Environment kwarg), a .json file entry is created linking the callable’s hash to its source
code saved as a string, which can be recreated using Python’s exec function.

72 Chapter 6. File Structure Overview

hyperparameter_hunter Documentation, Release 3.0.0

– If a Pandas DataFrame is provided (as is the case with train_dataset, and its holdout and test coun-
terparts), the process is slightly different. Rather than naming a file after the complex-typed attribute (as
in the first two types), a directory is named after the attribute, hence the ‘HyperparameterHunterAs-
sets/KeyAttributeLookup/train_dataset/’ directory. Then, .csv files are added to the corresponding
directory, which are named after the DataFrame’s hash, and which contain the DataFrame itself.

• Entries in the ‘KeyAttributeLookup/’ directory are created on an as-needed basis.

– This means that you may see entries named after attributes other than those shown in this example along
the course of your own project.

– They are created whenever Environments or Experiments are provided arguments too complex to
neatly display in the Experiment’s ‘Descriptions/’ entry file.

– Some other complex attributes you may come across that are given ‘KeyAttributeLookup/’ entries in-
clude: custom metrics provided via Environment’s metrics and metrics_params kwargs, and
Keras Neural Network callbacks and build_fns.

6.1.3 /Leaderboards/

• At the time of this documentation’s writing, this directory contains only one file: ‘GlobalLeaderboard.csv’;
although, more are on the way to assist you in comparing the performance of different Experiments, and they
should be similar in structure to this one.

• ‘GlobalLeaderboard.csv’ is a DataFrame containing one row for every completed Experiment

• It has a column for every final metric evaluation performed, as well as the following columns: ‘experiment_id’,
‘hyperparameter_key’, ‘cross_experiment_key’, and ‘algorithm_name’

• Rows are sorted in descending order according to the first metric provided, and will prioritize OOF evaluations
before holdout evaluations if both are given.

• If an Experiment does not have a particular evaluation, the Experiment row’s value for that column will
be null.

– This can happen if new metrics are specified, which were not recorded for earlier experiments, or if a
holdout_dataset is provided to later Experiments that earlier ones did not have.

6.1.4 /TestedKeys/

• This directory contains a .json file named for every unique cross_experiment_key encountered.

• Each .json file contains a dictionary, whose keys are the hyperparameter_keys that have been tested in
conjunction with the cross_experiment_key for which the containing file is named.

• The value of each of these keys is a list of strings, in which each string is an experiment_id, denot-
ing an Experiment that was conducted with the hyperparameters symbolized by that list’s key, and an
Environment, whose cross-experiment parameters are symbolized by the name of the containing file.

– The values are lists in order to accommodate Experiments that are intentionally duplicated.

6.1. HyperparameterHunterAssets/ 73

hyperparameter_hunter Documentation, Release 3.0.0

74 Chapter 6. File Structure Overview

CHAPTER

SEVEN

HYPERPARAMETERHUNTER EXAMPLES

This section provides links to example scripts that may be helpful to better understand how HyperparameterHunter
works with some libraries, as well as some of HyperparameterHunter’s more advanced features.

7.1 Getting Started

• Simple Experiment

• Simple Hyperparameter Optimization

7.2 Different Libraries

• CatBoost

• Keras

• LightGBM

• Scikit-Learn

• XGBoost

• rgf_python

7.3 Advanced Features

• Holdout/Test Datasets

• do_full_save

• environment_params_path

• lambda_callback

75

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_experiment_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/simple_optimization_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/holdout_test_datasets_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/do_full_save_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/environment_params_path_example.py
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lambda_callback_example.py

hyperparameter_hunter Documentation, Release 3.0.0

76 Chapter 7. HyperparameterHunter Examples

CHAPTER

EIGHT

HYPERPARAMETERHUNTER LIBRARY COMPATIBILITY

This section lists libraries that have been tested with HyperparameterHunter and briefly outlines some works in
progress.

8.1 Tested and Compatible

• CatBoost

• Keras

• LightGBM

• Scikit-Learn

• XGBoost

• rgf_python

8.2 Support On the Way

• PyTorch/Skorch

• TensorFlow

• Boruta

• Imbalanced-Learn

8.3 Not Yet Compatible

• TPOT

– After admittedly minimal testing, problems arose due to the fact that TPOT implements its own cross-
validation scheme

– This resulted in (probably unexpected) nested cross validation, and extremely long execution times

77

https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/catboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/keras_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/lightgbm_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/sklearn_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/xgboost_examples
https://github.com/HunterMcGushion/hyperparameter_hunter/blob/master/examples/rgf_examples

hyperparameter_hunter Documentation, Release 3.0.0

8.4 Notes

• If you don’t see the one of your favorite libraries listed above, and you want to do something about that, let us
know!

• See HyperparameterHunter’s ‘examples/’ directory for help on getting started with compatible libraries

• Improved support for hyperparameter tuning with Keras is on the way!

78 Chapter 8. HyperparameterHunter Library Compatibility

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

79

	Why Use HyperparameterHunter?
	TL;DR
	What is HyperparameterHunter?
	Features

	Installation
	Dependencies

	Quick Start
	Set Up an Environment

	HyperparameterHunter API Essentials
	Environment
	Experimentation
	Hyperparameter Optimization
	Hyperparameter Space
	Feature Engineering
	Extras
	Indices and tables

	Complete HyperparameterHunter API
	File Structure Overview
	HyperparameterHunterAssets/

	HyperparameterHunter Examples
	Getting Started
	Different Libraries
	Advanced Features

	HyperparameterHunter Library Compatibility
	Tested and Compatible
	Support On the Way
	Not Yet Compatible
	Notes

	Indices and tables

